Answer:
The formula of the compound is:
N2H2
Explanation:
Data obtained from the question:
Nitrogen (N) = 93.28%
Hydrogen (H) = 6.72%
Next, we shall determine the empirical formula for the unknown compound. This is illustrated below:
N = 93.28%
H = 6.72%
Divide by their molar mass
N = 93.28 /14 = 6.663
H = 6.72 /1 = 6.7
Divide by the smallest
N = 6.663 / 6.663 = 1
H = 6.72 /6.663 = 1
Therefore, the empirical formula is NH.
Now, we can obtain the formula of the compound as follow:
The formula of a compound is simply a multiple of the empirical formula.
[NH]n = 30.04
[14 + 1]n = 30.04
15n = 30.04
Divide both side by 15
n = 30.04/15
n = 2
Therefore, the formula of the compound is:
[NH]n => [NH]2 => N2H2
I think you can only have 3 water molecules because you need 2 hydrogen molecules in every water molecule and you have 6 hydrogen molecules so 6/2=3 and the reactant that is limited would be hydrogen since it limits the amount of water molecules you can have
Answer:
1. Phosphoric Acid
: Catalyst
2. Methyl Anthranilate
: Reactive
3. Sodium Nitrite
: Reactive
4. Diethyl Ether
: Solvent and reactant
5. Nitrogen
: Sub-product
Explanation:
The phosphoric acid is used as a catalyst for the reaction, the methyl anthranilate will react with the sodium nitrite to produce methyl salicylate, along with the diethyl ether and the nitrogen is a sub-product of the reaction.
Answer:
well because with the velocity of the two, using the second law, it can slow the velocity before there is a casualty.
Explanation:
Answer:
–36 KJ.
Explanation:
The equation for the reaction is given below:
2B + C —› D + E. ΔH = – 24 KJ
From the equation above,
1 mole of D required – 24 KJ of energy.
Now, we shall determine the energy change associated with 1.5 moles of D.
This can be obtained as illustrated below:
From the equation above,
1 mole of D required – 24 KJ of energy
Therefore,
1.5 moles of D will require = 1.5 × – 24 = –36 KJ.
Therefore, –36 KJ of energy is associated with 1.5 moles of D.