Answer:
N2H4 + 2H2O2 ---->N2 + 4H2O
Explanation:
N=2 N=2
H=6 ->8 H=2 ->8
O=2 -> 4 O=1 -> 4
Add coefficients to hydrogen peroxide on the left and water on the right, so that there is an equal number of hydrogens and oxygens.
Answer:
The law is observed in the given equation.
Explanation:
CaCO₃ + 2HCI → CaCI₂ +H₂O + CO₂
In order to find out if the law of conservative mass is followed, we need to <u>count how many atoms of each element are there in both sides of the equation</u>:
- Ca ⇒ 1 on the left, 1 on the right.
- C ⇒ 1 on the left, 1 on the right.
- O ⇒ 3 on the left, 3 on the right.
- H ⇒ 2 on the left, 2 on the right.
- Cl ⇒ 2 on the left, 2 on the right.
As the numbers for all elements involved are the same, the law is observed in the given equation.
Elements of Group 1 and group 2 in the periodic
table contain elements so reactive that they are never found in the free state
<u>Explanation</u>:
The metals in group 1 of periodic table consisting of 'alkali metals' which include lithium, potassium, sodium, rubidium, Francium and caesium. They are highly reactive because they have low ionisation energy and larger radius. The group 2 metals consist of 'alkaline earth metals' which include calcium, strontium, barium, beryllium, radium and magnesium. These alkaline earth metal have +2 oxidation number, hence are highly reactive.
These both group metals are mostly reactive and so are never found in a free state. When they are exposed to air they would immediately react with oxygen. Hence, are stored in oils to avoid oxidation.
A cow's<span> digestive system is quite different from that of humans. </span>Cows eat grass, hay and other plant material that contain hard-to-digest<span> cellulose. To cope with this </span>they<span> have a large stomach with four compartments, with the largest being the rumen.</span>