That's efficiency. There's no law that it must be stated in percent.
Given that,
Initial velocity , Vi = 0
Final velocity , Vf = 40 m/s
Acceleration due to gravity , a = 9.81 m/s²
Distance can be calculated as,
2as = Vf² - Vi²
2 * 9.81 *s = 40² - 0²
s = 81.55 m
For half height, that is, s = 40.77m
Vf= ??
2as = Vf² - Vi²
2 * 9.81 * 40.77 = Vf² - 0²
Vf² = 800
Vf = 28.28 m/s
Therefore, speed of roller coaster when height is half of its starting point will be 28 m/s.
I = MR^2
The Attempt at a Solution:::
I total = (3M)(0)^2 + (2M)(L/2)^2 + (M)(L)^2
I total = 3ML^2/2
It says the answer is 3ML^2/4 though.
⛔⛔⛔⛔⛔⛔⛔⛔⛔⛔⛔⛔⛔⛔⛔⛔⛔
mark it as brainliest.... ✌✌✌
Answer:
(a) r = 1.062·R =
(b) r =
(c) Zero
Explanation:
Here we have escape velocity v given by
and the maximum height given by
Therefore, when the initial speed is 0.241v we have
v = so that;
v² =
v² =
is then
Which gives
or
r = 1.062·R
(b) Here we have
Therefore we put in the maximum height equation to get
From which we get
r = 1.32·R
(c) The we have the least initial mechanical energy, ME given by
ME = KE - PE
Where the KE = PE required to leave the earth we have
ME = KE - KE = 0
The least initial mechanical energy to leave the earth is zero.
Answer:
0.5A
Explanation:
Using ,
R is the resistance (in Ohms)
V is the voltage (in V)
I is the current (in A)
I = 0.5A