The letter D represents the wavelength
The work done by a gas during an isothermal process is given by:

(1)
where
n is the number of moles of the gas
R is the gas constant
T is the absolute temperature of the gas

is the ratio between the final volume and the initial volume of the gas
We need to calculate this ratio, and we can do it by using the gas pressure. In fact, for an isothermal process, Boyle's law states that the product between pressure and volume of the gas is constant:

which can be rewritten as

which is equivalent to

The problem says that the pressure of the gas is tripled, therefore the ratio between final and initial volume is:

Now we can use eq.(1) to calculate the work done by the gas. The absolute temperature is

The number of moles is n=2, therefore the work done is

And the work is negative, because it is done by the environment on the gas (the gas is compressed)
(a) Fx = 1.464 N
(b) Fy = 1.952 N
(c) F(x, y) = 1.464 i + 1.952 j
Given
Mass = 1kg
Acceleration = 2.44 m/s2
Angle with positive X axis = 53°
As we know
F = ma
By substituting value
F= 1×2.44 N
F= 2.44 N
(a) Component of force in X direction
Fx = F Cosθ
Fx = 2.44 Cos(53°)
Fx = 2.44 × 0.60 = 1.464 N
(b) Component of force in Y direction
Fy = F Sinθ
Fy = 2.44 Sin(53°) = 2.44 × 0.80 = 1.952 N
(c) Net force in vector notation
F(x, y) = 1.464 i + 1.952 j
Thus we got net force.
#SPJ4
For details visit www.brainly.com
Charging by conduction involves the contact of a charged object to a neutral object. Suppose that a positively charged aluminum plate is touched to a neutral metal sphere. The neutral metal sphere becomes charged as the result of being contacted by the charged aluminum plate. Or suppose that a negatively charged metal sphere is touched to the top plate of a neutral needle electroscope. The neutral electroscope becomes charged as the result of being contacted by the metal sphere. And finally, suppose that an uncharged physics student stands on an insulating platform and touches a negatively charged Van de Graaff generator. The neutral physics student becomes charged as the result of contact with the Van de Graaff generator. Each of these examples involves contact between a charged object and a neutral object. In contrast to induction, where the charged object is brought near but never contacted to the object being charged, conduction charging involves making the physical connection of the charged object to the neutral object. Because charging by conduction involves contact, it is often called charging by contact.
Answer:
food drug and insecticide administration