This is the full question: what is the strongest intermolecular force in a liquid containing molecules with nonpolar bonds?
A. Covalent Bonds
B. Dispersion Forces
C. Hydrogen Bonds
D. none of these
This is the answer: B. Dispersion forces
The answer is going to be hydrochloric acid, therefore hydrochloric acid is a binary acid.
Probably b because soil can’t be the exact same and so that cancels out a and d
C₆H₆ is benzene which has a molar mass of 78 g/mol. When benzene is burned, the reaction is called combustion. The heat produced in this reaction is called the heat of combustion. For benzene, the heat of combustion is -3271 kJ/mol.
Heat of benzene = (8.7 g)(1 mol/78 g)(-3271 kJ/mol) = -364.84 kJ
By conservation of energy,
Heat of benzene = - Heat of water
where
Heat of Water = mCp(Tf - T₀)
where Cp for water is 4.187 kJ/kg·°C
Thus,
-364.84 kJ = -(5691 g)(1 kg/1000 g)(4.187 kJ/kg·°C)(Tf - 21)
<em>Tf = 36.31°C</em>
Answer:
23.2 g of Al will be left over when the reaction is complete
Explanation:
2Al + 3S → Al₂S₃
1 mol of Al = 26.98 g
1 mol of S = 32.06 g
Mole = Mass / Molar mass
63.8 g/ 26.98 g/m = 2.36 mole of Al
72.3 g / 32.06 g/m = 2.25 mole of S
2 mole of Aluminun react with 3 mole of sulfur
2.36 mole of Al react with (2.36 .3)/2 = 3.54 m of S
As I have 2.25 mole of S, and I need 3.54 S, is my limiting reagent so the limiting in excess is the Al.
3 mole of S react with 2 mole of Al
2.25 mole of S react with (2.25 m . 2)/3 = 1.50 mole
I need 1.50 mole of Al and I have 2.36, that's why the Al is in excess.
2.36 mole of Al - 1.50 mole of Al = 0.86 mole
This is the quantity of Al without reaction.
Molar mass . mole = Mass → 26.98 g/m . 0.86 m = 23.2 g