Answer:
2.1 × 10⁻¹ M
2.0 × 10⁻¹ m
Explanation:
Molarity
The molar mass of aniline (solute) is 93.13 g/mol. The moles corresponding to 3.9 g are:
3.9 g × (1 mol/93.13 g) = 0.042 mol
The volume of the solution is 200 mL (0.200 L). The molarity of aniline is:
M = 0.042 mol/0.200 L = 0.21 M = 2.1 × 10⁻¹ M
Molality
The moles of solute are 0.042 mol.
The density of the solvent is 1.05 g/mL. The mass corresponding to 200 mL is:
200 mL × 1.05 g/mL = 210 g = 0.210 kg
The molality of aniline is:
m = 0.042 mol/0.210 kg = 0.20 m = 2.0 × 10⁻¹ m
Answer: The concentration of
is 0.234 M
Explanation:
According to the neutralization law,
where,
= basicity
= 2
= molarity of
solution = ?
= volume of
solution = 50.0 ml
= acidity of
= 1
= molarity of
solution = 0.375 M
= volume of
solution = 62.5 ml
Putting in the values we get:
Therefore concentration of
is 0.234 M
If the grade of the ore is 37.3% nickel, then the unknown quantity to get 10 grams of nickel is 0.373 x = 10 grams or x = 10/0.373=26.8 grams or 0.0268 kg needed to dig up to recover the 10 grams of nickel. At this grade of ore, 1 kilogram would yield 373 grams of nickel.
Deuterium is a relatively uncommon form of hydrogen, but can be created from water.
- Heavy hydrogen commonly known as deuterium
- stable isotopes of hydrogen
- gets its name from the Greek word deuterons means second.
- has only one proton and one neutron
- nucleus of the hydrogen's deuterium atom is known as a deuteron containing one proton and one neutron.
- Deuterium forms chemical bonds that are stronger than regular hydrogen
- gas deuterium is colorless
- Deuterated water is used in Magnetic Resonance Spectroscopy.
- used in the determination of the isotopologue of various organic compounds.
- used in Infrared Spectroscopy.
To know more about Deuterium visit : brainly.com/question/27870183
#SPJ4