Answer
Animals losing habitats such as polar bears
Answer:
2.14 × 10⁻³ molecules/RSP
3.31 × 10⁻³ molecules/ESP
Explanation:
Step 1: Calculate the number of moles of Acetaminophen per Regular Strength Pill (RSP)
A Regular Strength Pill has 1.29 × 10²¹ molecules of Acetaminophen per pill. To convert molecules to moles we will use Avogadro's number: there are 6.02 × 10²³ molecules in 1 mole of molecules.
1.29 × 10²¹ molecules/RSP × 1 mol/6.02 × 10²³ molecules = 2.14 × 10⁻³ molecules/RSP
Step 2: Calculate the number of moles of Acetaminophen per Extra Strength Pill (ESP)
An Extra Strength Pill has 1.99 × 10²¹ molecules of Acetaminophen per pill. To convert molecules to moles we will use Avogadro's number: there are 6.02 × 10²³ molecules in 1 mole of molecules.
1.99 × 10²¹ molecules/ESP × 1 mol/6.02 × 10²³ molecules = 3.31 × 10⁻³ molecules/ESP
Answer:
The six member ring and the position of the -OH group on the carbon (#4) identifies glucose from the -OH on C # 4 in a down projection in the Haworth structure). Fructose is recognized by having a five member ring and having six carbons, a hexose.
Answer:
High temperature increases the number of high energy collisions
Explanation:
Increasing the temperature a reaction takes place at increases the rate of reaction. At higher temperatures, particles can collide more often and with more energy, which makes the reaction take place more quickly.
<span> First you need to know how many isotopes there are of silicon, and its average atomic units (look at periodic table). Then make up a system of equations to solve for it. Theres 3 stable silicon isotopes (28, 29, 30) so you will need to have 3 equations. You must be given the percent abundance of at least one of the isotopes to solve because here I can only see 2 equations (numbered down below) set x = percent abundance of si-28 y = percent abundance of si-29 z = percent abundance of si-30 since all of silicon atoms account for 100% of all silicon: x + y + z = 100% = 1 therefore: 1) x = 1 - y - z You also have 2) 28x + 29y + 30z = average atomic mass you can substitute x so that equation becomes: 28 (1 - y - z) + 29y + 30z = average atomic mass See how you have 2 variables here? You cant go on until you know the value of one isotope already or you have given a clue which you can derive the third equation</span>