<u>Answer:</u> No crystals of potassium sulfate will be seen at 0°C for the given amount.
<u>Explanation:</u>
We are given:
Mass of potassium nitrate = 47.6 g
Mass of potassium sulfate = 8.4 g
Mass of water = 130. g
Solubility of potassium sulfate in water at 0°C = 7.4 g/100 g
This means that 7.4 grams of potassium sulfate is soluble in 100 grams of water
Applying unitary method:
In 100 grams of water, the amount of potassium sulfate dissolved is 7.4 grams
So, in 130 grams of water, the amount of potassium sulfate dissolved will be 
As, the soluble amount is greater than the given amount of potassium sulfate
This means that, all of potassium sulfate will be dissolved.
Hence, no crystals of potassium sulfate will be seen at 0°C for the given amount.
Answer:
According to the scientists, evidence of an underground ocean suggests that Enceladus is one of the most likely places in the solar system to "host microbial life". Emissions of water vapor have been detected from several regions of the dwarf planet Ceres.
Explanation:
Answer:
Ammonia is the richest source of nitrogen on a mass percentage basis because it has 82.35% of nitrogen by mass.
Explanation:
Percentage of element in compound :

(a) Urea, 
Molar mass of urea = 60 g/mol
Atomic mass of nitrogen = 14 g/mol
Number of nitrogen atoms = 2

(b) Ammonium nitrate, 
Molar mass of ammonium nitrate = 80 g/mol
Atomic mass of nitrogen = 14 g/mol
Number of nitrogen atoms = 2

(c) Nitric oxide, NO
Molar mass of nitric oxide = 30 g/mol
Atomic mass of nitrogen = 14 g/mol
Number of nitrogen atoms = 1

(d) Ammonia, 
Molar mass of ammona = 17 g/mol
Atomic mass of nitrogen = 14 g/mol
Number of nitrogen atoms = 1
Ammonia is the richest source of nitrogen on a mass percentage basis because it has 82.35% of nitrogen by mass.
Answer:
- <em><u>A. isotopes </u></em>
<em><u></u></em>
Explanation:
The <em>periodic table</em> was organized by Dimitry Mendeleiev by 1869, as he showed the connection between the atomic mass and the properties of the elements.
Nevertheless, the order of some few elements had to be altered because the properties did not follow the order of the atomic masses.
Henry Mosely by 1913 determined that atoms of a same element had different number of neutrons, leading to different atomic masses. These atoms of a same element (with the same number of protons) with different number of neutrons are known as<em> isotopes.</em>
By arranging the elements in increasing order of the number or protons (atomic number), instead of the atomic masses, all the elements resulted ordered according with a repetitive (periodic) pattern of chemical properties.