Answer:
The final velocity of the car is 2.02 m/s
Explanation:
Hi there!
The kinetic energy of the car as it runs along the first flat horizontal segment can be calculated using the following equation:
KE = 1/2 · m · v²
Where:
KE = kinetic energy
m = mass
v = velocity
Then, the initial kinetic energy will be:
KE = 1/2 · 0.100 kg · (2.77 m/s)²
KE = 0.384 J
When the car gains altitude, it gains potential energy. The amount of gained potential energy will be equal to the loss of kinetic energy. So let´s calculate the potential energy of the car as it reaches the top:
PE = m · g · h
Where:
PE = potential energy.
m = mass
g = acceleration due to gravity.
h = height.
PE = 0.100 kg · 9.8 m/s² · 0.184 m
PE = 0.180 J
Then, the final kinetic energy will be (0.384 J - 0.180 J) 0.204 J
Using the equation of kinetice energy, we can obtain the velocity of the car:
KE = 1/2 · m · v²
0.204 J = 1/2 · 0.100 kg · v²
2 · 0.204 J / 0.100 kg = v²
v = 2.02 m/s
The final velocity of the car is 2.02 m/s