1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
il63 [147K]
3 years ago
8

How does the electric field intensity vary with the increase of distance of the point from the centre of a charged conducting sp

here? Explain with graph.​
Physics
1 answer:
Nataly_w [17]3 years ago
4 0

Answer:

(i)  Electric field outside the shell:

For point r>R; draw a spherical gaussian surface of radius r.

Using gauss law, ∮E.ds=q0qend

Since E is perpendicular to gaussian surface, angle betwee E is 0.

Also E being constant, can be taken out of integral.

So, E(4πr2)=q0q

So, E=4πε01r2q

You might be interested in
What is the process in which cells break down glucose, released the stored energy, and use the energy to make ATP
dimaraw [331]

Cellular respiration

4 0
3 years ago
Read 2 more answers
A sample of monatomic ideal gas occupies 5.00 L at atmospheric pressure and 300 K (point A). It is warmed at constant volume to
leonid [27]

Answer:

(a) 0.203 moles

(b) 900 K

(c) 900 K

(d) 15 L

(e) A → B, W = 0, Q = Eint = 1,518.91596 J

B → C, W = Q ≈ 1668.69974 J Eint = 0 J

C → A, Q = -2,531.5266 J, W = -1,013.25 J, Eint = -1,518.91596 J

(g) ∑Q = 656.089 J, ∑W =  655.449 J, ∑Eint = 0 J

Explanation:

At point A

The volume of the gas, V₁ = 5.00 L

The pressure of the gas, P₁ = 1 atm

The temperature of the gas, T₁ = 300 K

At point B

The volume of the gas, V₂ = V₁ = 5.00 L

The pressure of the gas, P₂ = 3.00 atm

The temperature of the gas, T₂ = Not given

At point C

The volume of the gas, V₃ = Not given

The pressure of the gas, P₃ = 1 atm

The temperature of the gas, T₂ = T₃ = 300 K

(a) The ideal gas equation is given as follows;

P·V = n·R·T

Where;

P = The pressure of the gas

V = The volume of the gas

n = The number of moles present

R = The universal gas constant = 0.08205 L·atm·mol⁻¹·K⁻¹

n = PV/(R·T)

∴ The number of moles, n = 1 × 5/(0.08205 × 300) ≈ 0.203 moles

The number of moles in the sample, n ≈ 0.203 moles

(b) The process from points A to B is a constant volume process, therefore, we have, by Gay-Lussac's law;

P₁/T₁ = P₂/T₂

∴ T₂ = P₂·T₁/P₁

From which we get;

T₂ = 3.0 atm. × 300 K/(1.00 atm.) = 900 K

The temperature at point B, T₂ = 900 K

(c) The process from points B to C is a constant temperature process, therefore, T₃ = T₂ = 900 K

(d) For a constant temperature process, according to Boyle's law, we have;

P₂·V₂ = P₃·V₃

V₃ = P₂·V₂/P₃

∴ V₃ = 3.00 atm. × 5.00 L/(1.00 atm.) = 15 L

The volume at point C, V₃ = 15 L

(e) The process A → B, which is a constant volume process, can be carried out in a vessel with a fixed volume

The process B → C, which is a constant temperature process, can be carried out in an insulated adjustable vessel

The process C → A, which is a constant pressure process, can be carried out in an adjustable vessel with a fixed amount of force applied to the piston

(f) For A → B, W = 0,

Q = Eint = n·cv·(T₂ - T₁)

Cv for monoatomic gas = 3/2·R

∴ Q = 0.203 moles × 3/2×0.08205 L·atm·mol⁻¹·K⁻¹×(900 K - 300 K) = 1,518.91596 J

Q = Eint = 1,518.91596 J

For B → C, we have a constant temperature process

Q = n·R·T₂·㏑(V₃/V₂)

∴ Q = 0.203 moles × 0.08205 L·atm/(mol·K) × 900 K × ln(15 L/5.00 L) ≈ 1668.69974 J

Eint = 0

Q = W ≈ 1668.69974 J

For C → A, we have a constant pressure process

Q = n·Cp·(T₁ - T₃)

∴ Q = 0.203 moles × (5/2) × 0.08205 L·atm/(mol·K) × (300 K - 900 K) = -2,531.5266 J

Q = -2,531.5266 J

W = P·(V₂ - V₁)

∴ W = 1.00 atm × (5.00 L - 15.00 L) = -1,013.25 J

W = -1,013.25 J

Eint = n·Cv·(T₁ - T₃)

Eint = 0.203 moles × (3/2) × 0.08205 L·atm/(mol·K) × (300 K - 900 K) = -1,518.91596 J

Eint = -1,518.91596 J

(g) ∑Q = 1,518.91596 J + 1668.69974 J - 2,531.5266 J = 656.089 J

∑W = 0 + 1668.69974 J -1,013.25 J = 655.449 J

∑Eint = 1,518.91596 J + 0 -1,518.91596 J = 0 J

5 0
3 years ago
A 36,287 kg truck has a momentum of 907,175 kg • . What is the truck’s velocity?
Snowcat [4.5K]
By definition,
Momentum = Mass * Velocity

Let v =  the velocity of the truck, m/s
The mass of the truck is 36,287 kg.
The momentum is 907,175 (kg-m)/s.

Therefore
907,175 (kg-m)/s = (36287 kg)*(v m/s)
v = 907175/36287 = 25 m/s

Answer: 25 m/s

7 0
3 years ago
Read 2 more answers
does it require more energy to brew 12 cups with the coffee-maker or reheat 12 cups of coffee in a microwave?
Leni [432]
It would take more energy to reheat 12 cups because only 1 or 2 cups can fit in a microwave rather an than brewing 12 cups in a coffee pot.


6 0
3 years ago
Read 2 more answers
An airplane is flying at a speed of 45 m/s when it drops a 40 kg food package to the Polar exploration team. If the plane drops
Alina [70]

To solve this problem we will apply the concepts related to energy conservation, so the potential energy in the package must be equivalent to its kinetic energy. From there we will find the speed of the package in the vertical component. The horizontal component is given, as it is the same as the one the plane is traveling to. Vectorially we will end up finding its magnitude. So,

PE = KE

mgh = \frac{1}{2}mv^2

Here,

m = Mass

g = Gravity

h = Height

v = Velocity

Rearranging to find the velocity

v = \sqrt{2gh}

Replacing,

v = \sqrt{2(9.8)(120)}

v = 48.49m/s

Using the vector properties the magnitude of the velocity vector would be given by,

|V| = \sqrt{v_x^2+v_y^2}

|V| = \sqrt{45^2+48.42^2}

|V| = 66.2m/s

Therefore the package is moving to 66.2m/s

3 0
3 years ago
Other questions:
  • A charge of +2.00 x 10^-9 C is placed at the origin, and another charge of +4.50 x 10^-9 C is placed at x = 1.6 m. The Coulomb c
    8·1 answer
  • A charged ball is moving horizontally and perpendicular to a magnetic field of 0.8 Tesla. The ball has a mass of 0.007 kg and ha
    6·2 answers
  • The head of a rattlesnake can accelerate at 40 m/s2 in striking a victim. If a car could do as well, how long would it take to r
    6·1 answer
  • An automobile engine develops a torque of 280 NxM at 3800 rpm. What is the power in watts and horsepower?
    14·1 answer
  • Which term , when multiplied by mass, equals density ?
    5·2 answers
  • Given 1 inch ≡ 2.54 cm and 1 foot ≡
    14·1 answer
  • The distance between the line X is =3 and X=-5 is what unit​
    6·2 answers
  • Tyler and his family drove from Atlanta to Baltimore. They traveled a total of 678 miles over 2 days.
    10·2 answers
  • On what does kinetic energy depend?
    8·2 answers
  • What is potential energy ?
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!