Since it was stated that it must move at constant
velocity, so the only force it must overpower is the frictional force.
So the equation is:
F cos θ = Ff
F cos 36 = 65 N
F = 80.34 N
<span>So the nurse must exert 80.34 N of force</span>
Answer:
5 n
Explanation:
25 and 25 cancel each other out and 50-45 is 5
Answer:
T = 0.017s
Explanation:
period is the time it takes a particle to make one oscillation
An electric current is periodic in nature
The current reaches 3.8A ten times.
So there must have been 10 cycles (10 periods) in 0.17s. let 'T' be the period:

t is the total time interval
n is the number of oscillations

10T = 0.17
T = 0.17/10 = 0.017s
Answer:
15 meters
Explanation:
The inicial energy of the ball is just potencial energy, and its value is:
E = m * g * h = m * g * 20,
where m is the ball mass, and g is the value of gravity.
In the moment that the ball strickes the ground, all potencial energy transformed into kinetic energy, and 25% of this energy is lost, so the total energy at this moment will be:
E' = 0.75 * E = 0.75 * m * g * 20 = 15*m*g
This kinetic energy will make the ball goes up again, and at the maximum height, all kinetic energy is transformed back into potencial energy.
So, as the mass and the gravity are constants, we can calculate the height the ball will reach:
E' = m*g*h = 15*m*g -> h = 15 meters
Answer:
The maximum height of the ball is 2 m.
Explanation:
Given that,
Mass of ball = 50 g
Height = 1.0 m
Angle = 30°
The equation is

We need to calculate the velocity
Using conservation of energy

Here, ball at rest so initial kinetic energy is zero and at the bottom the potential energy is zero

Put the value into the formula

Put the value into the formula




We need to calculate the maximum height of the ball
Using again conservation of energy

Here, h = y highest point
Put the value into the formula



Put the value of y in the given equation




Hence, The maximum height of the ball is 2 m.