<u>Answer:</u>
Those cells that develop differently are referred to Specialised Cells.
<u>
</u><u>Explanation:</u>
Specialised cells are the one that is assigned to perform a specific role. Every specialised cell in the body is assigned to do their own job. The special features in them help them to perform their functions effectively.
Examples of specialised cells are- red blood cells (they are responsible to carry oxygen in the body), nerve cells (specialises in transmitting electrical signals) and muscle cells (brings body parts together).
Polar.
Polar bonds have unequal sharing electrons while nonpolar, the opposite, has equal sharing electrons. This is a tactic typically used to determine whether or not a compound or element itself is polar or nonpolar.
Hope this helps!
The statement which is true is
metals lose electrons to become cations
<u><em>Explanation</em></u>
- metals tends to loss electrons to attain noble gas electrons configuration.
- When metal loses electrons they form a positive charged ions.
- The positively charged ion is known as cations.
- for example sodium metal (Na) loses 1 electron to form a cation with a charge of positive 1 ( Na^+)
The equation structure for the above mentioned reaction can be written as

<u>Explanation:</u>
Considering the above reaction, When Boron sulfide, reacts with water more violently to form boric acid and hydrogen sulfide gas.

In order to balance the equation, we can do as follows.There are 2 B - atoms on both sides of the equation, but only 2 H - atoms, and one O - atom on LHS, so we have to balance it by putting 6 in front of water and 2 in front of Boric acid and 3 in front of hydrogen sulphide gas, so that we have 2 B - atoms, 3 - S atoms, 12 H - atoms on both sides of the equation, and it is balanced. Balanced equation is given as,

Thus a Balanced equation of the above mentioned reaction is written.
1. The molar mass of the unknown gas obtained is 0.096 g/mol
2. The pressure of the oxygen gas in the tank is 1.524 atm
<h3>Graham's law of diffusion </h3>
This states that the rate of diffusion of a gas is inversely proportional to the square root of the molar mass i.e
R ∝ 1/ √M
R₁/R₂ = √(M₂/M₁)
<h3>1. How to determine the molar mass of the gas </h3>
- Rate of unknown gas (R₁) = 11.1 mins
- Rate of H₂ (R₂) = 2.42 mins
- Molar mass of H₂ (M₂) = 2.02 g/mol
- Molar mass of unknown gas (M₁) =?
R₁/R₂ = √(M₂/M₁)
11.1 / 2.42 = √(2.02 / M₁)
Square both side
(11.1 / 2.42)² = 2.02 / M₁
Cross multiply
(11.1 / 2.42)² × M₁ = 2.02
Divide both side by (11.1 / 2.42)²
M₁ = 2.02 / (11.1 / 2.42)²
M₁ = 0.096 g/mol
<h3>2. How to determine the pressure of O₂</h3>
From the question given above, the following data were obtained:
- Volume (V) = 438 L
- Mass of O₂ = 0.885 kg = 885 g
- Molar mass of O₂ = 32 g/mol
- Mole of of O₂ (n) = 885 / 32 = 27.65625 moles
- Temperature (T) = 21 °C = 21 + 273 = 294 K
- Gas constant (R) = 0.0821 atm.L/Kmol
The pressure of the gas can be obtained by using the ideal gas equation as illustrated below:
PV = nRT
Divide both side by V
P = nRT / V
P = (27.65625 × 0.0821 × 294) / 438
P = 1.524 atm
Learn more about Graham's law of diffusion:
brainly.com/question/14004529
Learn more about ideal gas equation:
brainly.com/question/4147359