Considering the Charles's law, the sample of carbon dioxide gas will occupy 308.72 mL.
<h3>Charles's law</h3>
Charles's law establishes the relationship between the temperature and the volume of a gas when the pressure is constant. This law says that the volume is directly proportional to the temperature of the gas: for a given sum of gas at constant pressure, as the temperature increases, the volume of the gas increases and as the temperature decreases, the volume of the gas decreases.
Mathematically, Charles's law states that the ratio between volume and temperature will always have the same value:

Considering an initial state 1 and a final state 2, it is fulfilled:

<h3>Final volume in this case</h3>
In this case, you know:
- V1= 250 mL
- T1= 25 C= 298 K (being 0 C=273 K)
- V2= ?
- T2= 95 C= 368 K
Replacing in Charles's law:

Solving:

<u><em>V2= 308.72 mL</em></u>
Finally, the sample of carbon dioxide gas will occupy 308.72 mL.
Learn more about Charles's law:
brainly.com/question/4147359
#SPJ1
Answer:
cooking food stuff rusting
Explanation:
Answer:
26.5 g
Explanation:
First we convert 100.0 mL to L:
- 100.0 mL / 1000 = 0.100 L
Now we <u>calculate how many moles of sodium carbonate are needed</u>, using the <em>definition of molarity</em>:
- Molarity = moles / liters
- moles = molarity * liters
- 2.5 M * 0.100 L = 0.25 mol
Finally we <u>convert 0.25 moles of sodium carbonate into grams</u>, using its <em>molar mass</em>:
- 0.25 mol * 106 g/mol = 26.5 g
Because those can leak and cause cancer
Answer:
Two methods which help us to conserve water are:
Sprinkler irrigation system: this irrigation has an arrangement of vertical pipes with rotating nozzles on the top. It is more useful in the uneven and sandy land where sufficient water is not available.
Drip irrigation system: this irrigation system has an arrangement of pipes or tubes with very small holes in them to water plants drop by drop just at the base of the root. It is very efficient as water is not wasted at all.