Answer: the reaction will produce 15.3 g of
KCl.
explanation:
1. write the balanced equation.
2KClO
3
→
2KCl
+
3O
2
2. calculate the moles of
KClO
3
.
Moles of KClO
3
=
25.0
g KClO
3
×
1 mol KClO
3
122.55
g KClO
3
=
0.2046 mol KClO
3
3. calculate the moles of
KCl
.
Moles of KCl
=
0.2046
mol KClO
3
×
2 mol KCl
2
mol KClO
3
=
0.2046 mol KCl
4. calculate the mass of
KCl
.
Mass of KCl
=
0.2046
mol KCl
×
74.55 g KCl
1
mol KCl
=
15.3 g KCl
I can't fully answer this question because it is incomplete. In order for me to help you, I could just define what a precipitation reaction is and give a concrete example.
A precipitation reaction consists of two aqueous solutions that when reacted together, forms an insoluble salt. For example,
AgNO₃ (aq) + HCl (aq) --> AgCl (s) + HNO₃ (aq)
In this case, the precipitate is AgCl, Silver Chloride, which appears as a white solid.
Every mole is 22.4 L at STP
Had to look for the options and here is my answer.
When we say that a redox reaction is spontaneous, this would mean that there is a formation of positive voltage <span>across the electrodes of a voltaic cell. Therefore, the system that this kind of reaction produces electrical energy is in a GALVANIC CELL. Hope this helps.</span>
The average atomic weight is, from the name itself, the average weight of all its naturally occurring isotopes. All you have to do is multiple the abundance of each isotope with its individual mass, then add them altogether.
Mass = (0.10*55)+(0.15*56)+(.75*57)
<em>Mass = 56.65 amu</em>