<h3>
Answer:</h3>
The Equilibrium would shift to produce more NO
<h3>
Explanation:</h3>
The reaction is;
N₂(g) + O₂(g) ⇆ 2NO(g)
- When a reaction is at equilibrium then the forward reaction rate will be equivalent to the reverse reaction rate. Additionally, the concentration of the reactants and products are the same.
- From Le Chatelier's principle, additional reactants favor the formation of more products while additional products favor the formation of more reactants.
- For example, when more oxygen is added then more Nitrogen (II) oxide will be formed.
- Oxygen is a reactant and when increased it favors forward reaction which leads to the formation of more NO which is the product.
Answer:
decreased by a factor of 10
Explanation:
pH is defined in such a way that;
pH= −log10(H)
Where H represents the concentration of Hydronium or Hydrogen ions
Given that pH is changed from 1 to 2,
By rearranging the above formula , we get 10−pH = H
- if pH=1,H=10−1=0.1M
- if pH=2,H=10−2=0.01M
Therefore, 0.1/0.01 = 10 and 0.1 > 0.01
Hence, the concentration of hydronium ions in the solution is decreased by a factor of 10
Answer:
Step 1) hydrolysis using NaOH/H2O to form benzylalcohol
Step2) oxidation to Carboxylic acid using KMnO4 followed by decarboxylation to form benzene
3) friedel craft acylation using CH3COCl/AlCl3
Explanation:
The above 3 steps will yield acetophenone from methylbenzoate
Answer:
2.067 L ≅ 2.07 L.
Explanation:
- The balanced equation for the mentioned reaction is:
<em>CS₂(g) + 3O₂(g) → CO₂(g) + 2SO₂(g),</em>
It is clear that 1.0 mole of CS₂ react with 3.0 mole of O₂ to produce 1.0 mole of CO₂ and 2.0 moles of SO₂.
- At STP, 3.6 L of H₂ reacts with (?? L) of oxygen gas:
It is known that at STP: every 1.0 mol of any gas occupies 22.4 L.
<u><em>using cross multiplication:</em></u>
1.0 mol of O₂ represents → 22.4 L.
??? mol of O₂ represents → 3.1 L.
∴ 3.1 L of O₂ represents = (1.0 mol)(3.1 L)/(22.4 L) = 0.1384 mol.
- To find the no. of moles of SO₂ produced from 3.1 liters (0.1384 mol) of hydrogen:
<u><em>Using cross multiplication:</em></u>
3.0 mol of O₂ produce → 2.0 mol of SO₂, from stichiometry.
0.1384 mol of O₂ produce → ??? mol of SO₂.
∴ The no. of moles of SO₂ = (2.0 mol)(0.1384 mol)/(3.0 mol) = 0.09227 mol.
- Again, using cross multiplication:
1.0 mol of SO₂ represents → 22.4 L, at STP.
0.09227 mol of SO₂ represents → ??? L.
∴ The no. of liters of SO₂ will be produced = (0.09227 mol)(22.4 L)/(1.0 mol) = 2.067 L ≅ 2.07 L.