Answer: option C. the number of electrons in the atom.
Given that the charge of a proton is the same that the charge of an electron, to be neutral the number of protons has to be the same than the number of electrons.
Answer:
On the attached picture.
Explanation:
Hello,
At first, it is important to remember that kinetic molecular theory help us understand how the molecules of a gas behave in terms of motion. In such a way, the relative velocity of a gas molecule has the following relationship with the gas' molar mass:
∝
That is, an inversely proportional relationship which allows us to infer that the bigger the molecule the slower it. In this manner, as argon is smaller than xenon, it will move faster.
Now, as the gases are in equal molar amounts and considering that argon moves faster, on the attached picture you will find the suitable depiction of the gas sample, since red dots (argon) have a larger tail than the blue dots (xenon).
Best regards.
Answer:
It's the first option. A distance between two similar points on a wave of light.
Explanation:
On a wavelength chart, where you measure the rate at which the light travels at its distance from the source. You have two points to compare to.
Answer:
Explanation:
The number of moles of solute is equal to product of the molar concentration (molarity) and the volume (in liters) of solution.
Since the volumes and the molar concentrations of the<em> NaOH </em>and <em>HCl </em>solutions mixed are equal, each one of them contributes the same number of moles of solute.
Since every mol of NaOH produces one mol of OH⁻ ions and every mol of HCl produces one mol of H⁺ ion, the number of moles of OH ⁻ and H⁺ in solution are equal.
Thus, OH⁻ and H⁺ ions will be neutralized by the reaction:
- OH⁻ (aq) + H⁺ (aq) ⇄ H₂O (l)
Which is strongly shifted to the right and has <em>neutral pH</em>.
Hence, you conclude that the approximate <em>pH of the solution is neutral.</em>