Was there suppose to be a picture included?
I believe the correct answer from the choices listed above is option A. To correct her measurement to standard temperature and pressure (STP), she should <span>make a volume correction based on a higher temperature of 273 K. Hope this answers the question. Have a nice day.</span>
The question is incomplete, here is the complete question:
Calculate the pH of a solution prepared by dissolving 0.370 mol of formic acid (HCO₂H) and 0.230 mol of sodium formate (NaCO₂H) in water sufficient to yield 1.00 L of solution. The Ka of formic acid is 1.77 × 10⁻⁴
a) 2.099
b) 10.463
c) 3.546
d) 2.307
e) 3.952
<u>Answer:</u> The pH of the solution is 3.546
<u>Explanation:</u>
We are given:
Moles of formic acid = 0.370 moles
Moles of sodium formate = 0.230 moles
Volume of solution = 1 L
To calculate the molarity of solution, we use the equation:

To calculate the pH of acidic buffer, we use the equation given by Henderson Hasselbalch:
![pH=pK_a+\log(\frac{[salt]}{[acid]})](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%28%5Cfrac%7B%5Bsalt%5D%7D%7B%5Bacid%5D%7D%29)
![pH=pK_a+\log(\frac{[HCOONa]}{[HCOOH]})](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%28%5Cfrac%7B%5BHCOONa%5D%7D%7B%5BHCOOH%5D%7D%29)
= negative logarithm of acid dissociation constant of formic acid = 3.75
![[HCOOH]=\frac{0.370}{1}](https://tex.z-dn.net/?f=%5BHCOOH%5D%3D%5Cfrac%7B0.370%7D%7B1%7D)
pH = ?
Putting values in above equation, we get:

Hence, the pH of the solution is 3.546
Answer:

Explanation:
Number of molecules of water = 
= Avogadro's number = 
Number of moles is given by


The number of moles of water is
.
Answer:
The volume of the second cylinder is 80 liters
Explanation:
We use the Boyle-Mariotte formula, according to which the pressure and volume of a gas are inversely related, keeping the temperature constant: P1 x V1 = P2xV2. We convert the pressure in mmHg to atm:
760 mmHg-----1 atm
380mmHg------x= (380mmHgx1atm)/760mmHg=0,5 atm
P1xV1=P2xV2
2 atmx20 L= 0,5atm x V2 V2=(2 atmx20 L)/0,5atm=80L