A negative
That's the answer
We could reduce soil erosion and recycle phosphorus from farm and human waste so that we could help make food production sustainable and prevent algae blooms. We can also do land reclamation as well to help solve this problem. With the land, we would have to design a system to where the land could be functional again in order to plant crops, trees, also to help the wildlife that was once a part of the island. Therefore if the design is done before the mining then afterward we can do the reclamation of the land which would help the people to be able to function after the mining. It would also help the future generations that come along after the previous generations. Everyone must work together in the process in order for everyone to survive. If all this is done then the people of the island would not have to import their food. The reclamation process is the most important thing that has to be designed first whether it is land, soil, water, lakes, and clay then after plant trees, vegetation, and other forms of plants to help replenish the land after the mining is done.
I hope I helped :3
Answer:
0.133 mol (corrected to 3 sig.fig)
Explanation:
Take the atomic mass of H=1.0, and O=16.0,
no. of moles = mass / molar mass
so no. of moles of H2O produced = 1.2 / (1.0x2+16.0)
= 0.0666666 mol
From the equation, the mole ratio of H2:H2O = 2:2 = 1:1,
meaning every 1 mole of H2 reacted gives out 1 mole of water.
So, the no, of moles of H2 required should equal to the no, of moles of H2O produced, which is also 0.0666666 moles.
mass = no. of moles x molar mass
hence,
mass of H2 required = 0.066666666 x (1.0x2)
= 0.133 mol (corrected to 3 sig.fig)
Answer:
869 g Cl₂O
Explanation:
To find the theoretical yield of Cl₂O, you need to (1) convert moles SO₂ to moles Cl₂O (via mole-to-mole ratio from reaction coefficients) and then (2) convert moles Cl₂O to grams Cl₂O (via molar mass). It is important to arrange the conversions/ratios in a way that allows for the cancellation of units (the desired unit should be in the numerator). The final answer should have 3 sig figs to reflect the sig figs of the given amount (10.0 moles).
1 SO₂ (g) + 2 Cl₂ (g) ----> 1 SOCl₂ (g) + 1 Cl₂O (g)
Molar Mass (Cl₂O): 2(35.453 g/mol) + 15.998 g/mol
Molar Mass (Cl₂O): 86.904 g/mol
10.0 moles SO₂ 1 mole Cl₂O 86.904 g
------------------------ x ---------------------- x ------------------ = 869 g Cl₂O
1 mole SO₂ 1 mole