4/3 m/s ( approximately 1.3333... m/s)
When you ask for "joules per second", you're asking for "watts".
The rate of energy "transfer" is 'power'. In this case, the light bulb
transfers energy out of the electrical circuit and into the space
around it, in the form of light and heat radiation.
Electrical power = (voltage) x (current) =
(6 volts) x (0.5 ampere) =
3 watts = 3 joules per second.
The force acting on a moving charge is known as the magnetic force. The force acting on the charge will be 3.75 N.
<h3>What is the force exerted on the charge?</h3>
Magnetic fields only exert a force on a moving electric charge. A moving charge generates a magnetic field. With an increase in charge and magnetic field strength, this force rises.
when charges have higher velocities, the force is stronger. However, the magnetic force is always perpendicular to the velocity.
Mathematically the force exerted on the charge will be
F=qvBsinα
F= force acting on the charge
v = velocity of charge
q = charge
F=qvBsinα
F=2.5×10⁻⁶×5.0×10³×3.0×10²
F=37.5 N
Hence The force acting on the charge will be 3.75 N.
To learn more about the force acting on charge refer to ;
brainly.com/question/451411
F = q V B sinα
Where F is the force applied to a moving charge.
V = charge velocity
q stands for charge.
α = angle between V and B directions
As a result, the moving charge is subjected to a force of 3.75 Newton.
The answer is B I hope this helps luv
Incomplete question.The Complete question is here
A flat uniform circular disk (radius = 2.00 m, mass = 1.00 ✕ 102 kg) is initially stationary. The disk is free to rotate in the horizontal plane about a friction less axis perpendicular to the center of the disk. A 40.0-kg person, standing 1.25 m from the axis, begins to run on the disk in a circular path and has a tangential speed of 2.00 m/s relative to the ground.
a.) Find the resulting angular speed of the disk (in rad/s) and describe the direction of the rotation.
b.) Determine the time it takes for a spot marking the starting point to pass again beneath the runner's feet.
Answer:
(a)ω = 1 rad/s
(b)t = 2.41 s
Explanation:
(a) initial angular momentum = final angular momentum
0 = L for disk + L............... for runner
0 = Iω² - mv²r ...................they're opposite in direction
0 = (MR²/2)(ω²) - mv²r
................where is ω is angular speed which is required in part (a) of question
0 = [(1.00×10²kg)(2.00 m)² / 2](ω²) - (40.0 kg)(2.00 m/s)²(1.25 m)
0=200ω²-200
200=200ω²
ω = 1 rad/s
b.)
lets assume the "starting point" is a point marked on the disk.
The person's angular speed is
v/r = (2.00 m/s) / (1.25 m) = 1.6 rad/s
As the person and the disk are moving in opposite directions, the person will run part of a revolution and the turning disk would complete the whole revolution.
(angle) + (angle disk turns) = 2π
(1.6 rad/s)(t) + ωt = 2π
t[1.6 rad/s + 1 rad/s] = 2π
t = 2.41 s