The element that will have the lowest electronegativity is an element with a small number of valence electrons and a large atomic radius.
Electronegativity of an element is the ability or power of that element in a molecule to attract electrons to its Valence electrons. The following are the properties of electronegativity:
- It increases across a period from left to right of the periodic table,
- It decreases down the periodic table groups
- Group 1 elements are the least (lowest) electronegative elements. These elements have the lowest valence electrons with a large atomic radius.
- Group 7 elements are the most electronegative elements.
Atomic radius of elements increase down a group because of a progressive increase in the number of shells occupied by electrons which increases the size. But it decreases across a period because electrons are accommodated within the same shell leading to greater attraction by the protons in the nucleus.
Learn more about electronegativity of elements here:
brainly.com/question/20348681
Answer:
See explanation
Explanation:
The reactivity of metals has a lot to do with their position in the electrochemical series. However, it is also known that metallic character decreases across the period. This implies that as we move from left to right along the periodic table. Sodium, magnesium, aluminum and silicon continues to decrease in metallic character. As a matter of fact, silicon is a metalloid and not a pure metal.
Sodium reacts with cold water to give a vigorous reaction,magnesium and aluminium reacts with steam at red heat.
Silicon does not react with water, even as steam, under normal conditions.
Answer: La Ferrassie 1
Explanation: La Ferrassie 1, often referred to as LF1, is a male Neanderthal skeleton estimated to be 70–50,000 years old. It was discovered at the La Ferrassie site in France by Louis Capitan and Denis Peyrony in 1909. The skull is the most complete Neanderthal skull ever found.
Answer:
D) It has a different unit than atomic mass.
Answer:
ΔG = -52.9 kJ/mol
Explanation:
Step 1: Data given
Temperature = 298 K
All species have a partial pressure of 1 atm
Δ G ° = − 69.0 kJ/mol
Step 2: The balanced equation
N2(g) + 3H2(g) ⇆ 2NH3 (g)
Step 3: Calculate Q
we will use the expression: ΔG = ΔG° + RT*ln(Q)
⇒with Q = the reaction coordinate: Q = (PNH3)²/ ((PN2)*(Ph2)³) = 666.67
Step 4: Calculate ΔG
So, ΔG = -69.0 kJ/mol + (0.008314 kJ/mol*K)*(298 K)*ln(666.67) = -52.9 kJ/mol
(R = the gas constant = 8.314 J/mol* K OR 0.008314 kJ/mol*K)