1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Firlakuza [10]
2 years ago
10

What are some of the downsides of using hydroelectric power?.

Physics
1 answer:
never [62]2 years ago
4 0
Has an Environmental Impact. Perhaps the largest disadvantage of hydroelectric energy is the impact it can have on the environment.
It Displaces People.
It's Expensive.
There are Limited Reservoirs.
There are Droughts.
It's Not Always Safe
You might be interested in
What is the definition of density?​
Luba_88 [7]

Answer:

Density is the amount of mass in a specified space. It is a way to measure how compact an object is

Explanation:

6 0
3 years ago
A 3.35 kg object initially moving in the positive x direction with a velocity of 4.90 m s collides with and sticks to a 1.88 kg
ahrayia [7]

Answer:

The final components of velocity of the composite object is 3.33 m/s.

Explanation:

Given;

mass of the first object, m₁ = 3.35 kg

initial velocity of the first object, u₁ = 4.90 m/s in positive x-direction

mass of the second object, m₂ = 1.88 kg

initial velocity of the second object, u₂ = 3.12 m/s in negative y-direction

initial momentum of the first object, P₁ = 3.35 x 4.9 = 16.415 kgm/s

initial momentum of the second object, P₂ = 1.88 x 3.12 = 5.8656 kgm/s

The resultant velocity of the two objects is given by;

R² = 16.415² + 5.8656²

R² = 303.858

R = √303.858

R = 17.432 kgm/s

Apply the principle of conservation of linear momentum for inelastic collision;

total initial momentum before = total final momentum after collision

P₁(x) + P₂(y) = Pf

R = Pf

R = v(m₁ + m₂)

17.432 = v(m₁ + m₂)

where;

v is the final components of velocity of the composite object

v = \frac{17.432}{m_1 + m_2} \\\\v = \frac{17.432}{3.35+1.88} \\\\v = 3.33 \ m/s

Therefore, the final components of velocity of the composite object is 3.33 m/s.

8 0
3 years ago
Two Earth satellites, A and B, each of mass m, are to be launched into circular orbits about Earth's center. Satellite A is to o
Pachacha [2.7K]

(a) 0.448

The gravitational potential energy of a satellite in orbit is given by:

U=-\frac{GMm}{r}

where

G is the gravitational constant

M is the Earth's mass

m is the satellite's mass

r is the distance of the satellite from the Earth's centre, which is sum of the Earth's radius (R) and the altitude of the satellite (h):

r = R + h

We can therefore write the ratio between the potentially energy of satellite B to that of satellite A as

\frac{U_B}{U_A}=\frac{-\frac{GMm}{R+h_B}}{-\frac{GMm}{R+h_A}}=\frac{R+h_A}{R+h_B}

and so, substituting:

R=6370 km\\h_A = 5970 km\\h_B = 21200 km

We find

\frac{U_B}{U_A}=\frac{6370 km+5970 km}{6370 km+21200 km}=0.448

(b) 0.448

The kinetic energy of a satellite in orbit around the Earth is given by

K=\frac{1}{2}\frac{GMm}{r}

So, the ratio between the two kinetic energies is

\frac{K_B}{K_A}=\frac{\frac{1}{2}\frac{GMm}{R+h_B}}{\frac{1}{2}\frac{GMm}{R+h_A}}=\frac{R+h_A}{R+h_B}

Which is exactly identical to the ratio of the potential energies. Therefore, this ratio is also equal to 0.448.

(c) B

The total energy of a satellite is given by the sum of the potential energy and the kinetic energy:

E=U+K=-\frac{GMm}{R+h}+\frac{1}{2}\frac{GMm}{R+h}=-\frac{1}{2}\frac{GMm}{R+h}

For satellite A, we have

E_A=-\frac{1}{2}\frac{GMm}{R+h_A}=-\frac{1}{2}\frac{(6.67\cdot 10^{-11})(5.98\cdot 10^{24}kg)(28.8 kg)}{6.37\cdot 10^6 m+5.97\cdot 10^6 m}=-4.65\cdot 10^8 J

For satellite B, we have

E_B=-\frac{1}{2}\frac{GMm}{R+h_B}=-\frac{1}{2}\frac{(6.67\cdot 10^{-11})(5.98\cdot 10^{24}kg)(28.8 kg)}{6.37\cdot 10^6 m+21.2\cdot 10^6 m}=-2.08\cdot 10^8 J

So, satellite B has the greater total energy (since the energy is negative).

(d) -2.57\cdot 10^8 J

The difference between the energy of the two satellites is:

E_B-E_A=-2.08\cdot 10^8 J-(-4.65\cdot 10^8 J)=-2.57\cdot 10^8 J

4 0
3 years ago
How do leptons differ from hadrons?
Savatey [412]
I'll just give you the link for it but count it as my answer. http://www.differencebetween.com/difference-between-leptons-and-vs-hadrons/
4 0
4 years ago
The Brazilian rain forest is an area with significant biodiversity. As the rain forest is replaced with agricultural land, it is
valina [46]
B I think I’m not sure tho
4 0
3 years ago
Read 2 more answers
Other questions:
  • How much work, in N*m, is done when a 10.0 N force moves an object 2.5 m?
    9·1 answer
  • What is the primary technique for determining the absolute age of rock
    6·1 answer
  • John performs an experiment on an electric circuit. He increases the voltage from 25 volts to 50 volts while keeping the resista
    5·2 answers
  • Is<br>pressure<br>and<br>electric<br>charge<br>a vector<br>quantity? Explain.​
    5·1 answer
  • Equivalent resistance between A and B.<br>A) 2.4 ohms<br>B)18 ohms<br>C) 6 ohms<br>D) 36 ohms ​
    13·2 answers
  • Give two examples of forces you exerted on objects today. What factors were different about each force you mentioned?
    9·1 answer
  • A body of mass 10 kg is pulled by a force 8 N. calculate the acceleration and the the final velocity of the body after 5 second.
    5·1 answer
  • How might the ability of magnets to attract certain metals relate to the crane?
    5·1 answer
  • A whale comes to the surface to breathe and then dives at an angle 24 degrees to the horizontal surface of the water. The whale
    13·1 answer
  • 5 . W h ic h o f th e fo l lo w in g is N O T a fu n d a m e n ta l S .I u n it? A . M e te r B . A m p e re C . K e lv in D . R
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!