Answer:
solid
Explanation:
It is called an amorphous solid because it lacks the ordered molecular structure of true solids, and yet its irregular structure is too rigid for it to qualify as a liquid.
Answer:
Final molarity of iodide ion C(I-) = 0.0143M
Explanation:
n = (m(FeI(2)))/(M(FeI(2))
Molar mass of FeI(3) = 55.85+(127 x 2) = 309.85g/mol
So n = 0.981/309.85 = 0.0031 mol
V(solution) = 150mL = 0.15L
C(AgNO3) = 35mM = 0.035M = 0.035m/L
n(AgNO3) = C(AgNO3) x V(solution)
= 0.035 x 0.15 = 0.00525 mol
(AgNO3) + FeI(3) = AgI(3) + FeNO3
So, n(FeI(3)) excess = 0.00525 - 0.0031 = 0.00215mol
C(I-) = C(FeI(3)) = [n(FeI(3)) excess]/ [V(solution)] = 0.00215/0.15 = 0.0143mol/L or 0.0143M
Answer:
The answer to the question is 0.07 moles
Answer:
both spheres have a positive charge
Boiling point elevation is given as:
ΔTb=iKbm
Where,
ΔTb=elevation in the boiling point
that is given by expression:
ΔTb=Tb (solution) - Tb (pure solvent)
Here Tb (pure solvent)=118.1 °C
i for CaCO3= 2
Kb=2.93 °C/m
m=Molality of CaCO₃:
Molality of CaCO₃=Number of moles of CaCO₃/ Mass of solvent (Kg)
=(Given Mass of CaCO3/Molar mass of CaCO₃)/ Mass of solvent (Kg)
=(100.0÷100 g/mol)/0.4
= 2.5 m
So now putting value of m, i and Kb in the boiling point elevation equation we get:
ΔTb=iKbm
=2×2.93×2.5
=14.65 °C
boiling point of a solution can be calculated:
ΔTb=Tb (solution) - Tb (pure solvent)
14.65=Tb (solution)-118.1
Tb (solution)=118.1+14.65
=132.75