Are you speaking of a density gradient, in which a more concentrated solution moves below a less concentrated solution?
In that case, the more concentrated solution has the greater density, and it will gradually sink below the less concentrated solution.
In the same way, a stone will sink in water, which is less dense than the stone.
Answer:
The value of
is 0.02495.
Explanation:
Initial concentration of
gas = 0.675 M
Initial concentration of
gas = 0.973 M
Equilibrium concentration of mustard gas = 0.35 M

initially
0.675 M 0.973 M 0
At equilibrium ;
(0.675-0.35) M (0.973-2 × 0.35) M 0.35 M
The equilibrium constant is given as :
![K_c=\frac{[S(CH_2CH_2Cl)_2]}{[SCl_2][C_2H_4]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BS%28CH_2CH_2Cl%29_2%5D%7D%7B%5BSCl_2%5D%5BC_2H_4%5D%5E2%7D)


The relation between
and
are :
where,
= equilibrium constant at constant pressure = ?
= equilibrium concentration constant =14.45
R = gas constant = 0.0821 L⋅atm/(K⋅mol)
T = temperature = 20.0°C =20.0 +273.15 K=293.15 K
= change in the number of moles of gas = [(1) - (1 + 2)]=-2
Now put all the given values in the above relation, we get:


The value of
is 0.02495.
Answer:
The volume of water to be added is 0.175 liters of water
Explanation:
The given concentration of the nitric acid = 55% (M/M)
The mass of the nitric acid solution = 100 gm
The concentration solution is to diluted to = 20% (M/M)
The 100 g 55%(M/M) nitric acid solution gives 55g nitric acid in 100 g of solution
Therefore, to have 20% (M/M) nitric acid solution with the 55 g nitric acid, we get
Let "x" represent the volume of the resulting solution, we have;
20% of x = 55 g of nitric acid
∴ 20/100 × x = 55 g
x = 55 g × 100/20 = 275 g
The mass of extra water to be added = The mass of the 20%(M/M) solution solution of nitric acid - The current mass of the 55%(M/M) solution of nitric acid
The mass of extra water to be added = 275 g - 100 g = 175 g
Volume = Mass/Density
The density of water ≈ 1 g/ml
∴ The volume of water to be added that gives 175 g of water = 175 g/(1 g/ml) = 175 ml. = 0.175 l
The volume of water to be added = 0.175 liters of water.
Answer:
Your body cells use the oxygen you breathe to get energy from the food you eat. This process is called cellular respiration. During cellular respiration the cell uses oxygen to break down sugar. Breaking down sugar produces the energy your body needs.
Explanation:
Brainly pls
Answer:
yep yep yep yep yep yep yep yep yep yep so cool yep
yep
yep
yep
yep
yep
yep
yep
yep
yep
yep
yep
yep
yep
yep
yep
yep
yel
yep
ype
yl
yrdvt
f4ef
te
g
5
ey
rw
f
t
t
e
c
t
y
r
e
s
f
t
4
e
d
g
t
r
e
f
r
r
e
e
f
r
r
r
r
e
Explanation:
nr
e
e
t
y
e
f
r