The age of the galaxy when we look back is 13.97 billion years.
The given parameters:
- <em>distance of the galaxy, x = 2,000 Mpc</em>
According Hubble's law the age of the universe is calculated as follows;
v = H₀x
where;
H₀ = 70 km/s/Mpc

Thus, the age of the galaxy when we look back is 13.97 billion years.
Learn more about Hubble's law here: brainly.com/question/19819028
Reading a book in your warm, comfy seat ... in Row-27 of a
passenger airliner cruising at 450 miles per hour.
<span>The angular momentum of a particle in orbit is
l = m v r
Assuming that no torques act and that angular momentum is conserved then if we compare two epochs "1" and "2"
m_1 v_1 r_1 = m_2 v_2 r_2
Assuming that the mass did not change, conservation of angular momentum demands that
v_1 r_1 = v_2 r_2
or
v1 = v_2 (r_2/r_1)
Setting r_1 = 40,000 AU and v_2 = 5 km/s and r_2 = 39 AU (appropriate for Pluto's orbit) we have
v_2 = 5 km/s (39 AU /40,000 AU) = 4.875E-3 km/s
Therefore, </span> the orbital speed of this material when it was 40,000 AU from the sun is <span>4.875E-3 km/s.
I hope my answer has come to your help. Thank you for posting your question here in Brainly.
</span>
Answer:
180.4 m
Explanation:
The package in relation to the point where it was released falls a certain distance that is calculated by applying the horizontal motion formulas , as the horizontal speed of the plane and the height above the ground are known, the time that It takes the package to reach its destination and then the horizontal distance (x) is calculated from where it was dropped, as follows:

h = 100 m
x =?
Height formula h:

Time t is cleared:


t = 4.51 sec
Horizontal distance formula x:

x = 40 m / sec x 4.51 sec
x = 180.4 m
Answer : 413.44N
Here it is given that an elevator is moving down with an acceleration of 3.36 m/s² . And we are interested in finding out the apparent weight of a 64.2 kg man . For the diagram refer to the attachment .
- From the elevator's frame ( non inertial frame of reference) , we would have to think of a pseudo force.
- The direction of this force is opposite to the direction of acceleration the frame and its magnitude is equal to the product of mass of the concerned body with the acceleration of the frame .
- When a elevator accelerates down , the weight recorded is less than the actual weight .
From the Free body diagram ,
- Mass of the man = 64.2 kg