Answer:
He needs 1.53 seconds to stop the car.
Explanation:
Let the mass of the car is 1500 kg
Speed of the car, v = 20.5 m/s
He will not push the car with a force greater than,
The impulse delivered to the object is given by the change in momentum as :
So, he needs 1.53 seconds to stop the car. Hence, this is the required solution.
By definition, the momentum is given by:
p = m * v
Where,
m = mass
v = speed.
On the other hand,
F = m * a
Where,
m = mass
a = acceleration:
For the boy we have:
p1 = m * v
p1 = (F / a) * v
p1 = ((710) / (9.81)) * (0.50)
p1 = 36.19 Kg * (m / s)
For the girl we have:
p2 = m * v
p2 = (F / a) * v
p2 = ((480) / (9.81)) * (v)
p2 = 48.93 * v Kg * (m / s)
Then, we have:
p1 + p2 = 0
36.19 + 48.93 * v = 0
Clearing v:
v = - (36.19) / (48.93)
v = -0.74 m / s (negative because the velocity is in the opposite direction of the boy's)
Answer:
the girl's velocity in m / s after they push off is -0.74 m / s
1: Evaporation, this accounts for the most
2: Transpiration, second most
3: Sublimation, third most