<h2>♨ANSWER♥</h2>
length of V-50 = 49mm
length of V-1 = 49/50mm
= 0.98mm
so,
minor measurement = (M-1) - (V-1)
= 1mm -0.98mm
= 0.02mm
☆ Therefore,
The minor measurement of the vernier scale is 0.02mm.
<u>☆</u><u>.</u><u>.</u><u>.</u><u>hope this helps</u><u>.</u><u>.</u><u>.</u><u>☆</u>
_♡_<em>mashi</em>_♡_
Answer:
A. The time taken for the car to stop is 3.14 secs
B. The initial velocity is 81.64 ft/s
Explanation:
Data obtained from the question include:
Acceleration (a) = 26ft/s2
Distance (s) = 256ft
Final velocity (V) = 0
Time (t) =?
Initial velocity (U) =?
A. Determination of the time taken for the car to stop.
Let us obtain an express for time (t)
Acceleration (a) = Velocity (V)/time(t)
a = V/t
Velocity (V) = distance (s) /time (t)
V = s/t
a = s/t^2
Cross multiply
a x t^2 = s
Divide both side by a
t^2 = s/a
Take the square root of both side
t = √(s/a)
Now we can obtain the time as follow
Acceleration (a) = 26ft/s2
Distance (s) = 256ft
Time (t) =..?
t = √(s/a)
t = √(256/26)
t = 3.14 secs
Therefore, the time taken for the car to stop is 3.14 secs
B. Determination of the initial speed of the car.
V = U + at
Final velocity (V) = 0
Deceleration (a) = –26ft/s2
Time (t) = 3.14 sec
Initial velocity (U) =.?
0 = U – 26x3.14
0 = U – 81.64
Collect like terms
U = 81.64 ft/s
Therefore, the initial velocity is 81.64 ft/s
Answer:
0.74 m/s
Explanation:
From the question,
We apply the law of conservation of momentum,
Total momentum before collision = Total momentum after collision.
Since the skateboard, the person and the brick where stationary, therefore, the total momentum before collision is 0
0 = Total momentum after collision
(m+M)V + m'v = 0
Where m = mass of the skateboard, M = mass of the person, m' = mass of the brick, V = recoil velocity of the person and the skateboard, v = velocity of the brick
make V the subject of the equation above
V = -m'v/(m+M)................... Equation 1
Given: m = 4.10 kg, M = 68.0 kg, m' = 2.50 kg, v = 21.0 m/s.
Substitute these values into equation 1
V = -(2.5×21)/(68+2.5)
V = 52.50/70.5
V = 0.74 m/s
Answer:
the radii of curvature is 30 cm.
Explanation:
given,
object is place at = 45 cm
image appears at = 90 cm
focal length = ?
refractive index = 1.5
radii of curvature = ?


f = 30 cm
using lens formula





R = 30 cm
hence, the radii of curvature is 30 cm.
Answer:
0.073 N-m
Explanation:
i = 12 A, l = 0.8 m, B = 0.12 T
The circumference of the loop is 0.8 m.
Let r be the radius of the loop.
2 x 3.14 x r = 0.8
r = 0.127 m
Maximum Torque = i x A x B
Maximum Torque = 12 x 3.14 x 0.127 x 0.127 x 0.12 = 0.073 N-m