I believe the answer is A
The driver is tooling along in his snowmobile, pointed north,
at 8.5 m/s.
He's carrying the flares with him, so the flares are also moving north
at 8.5 m/s.
When he fires the flare straight up, it has a vertical velocity of 4.3 m/s
straight up, and a horizontal velocity of 8.5 m/s towards the north.
The magnitude of the net velocity is √(4.3² + 8.5²) .
That's about 9.53 m/s, at some angle between straight up
and straight north.
The angle above horizontal is the angle that has a tangent of 4.3/8.5 .
I'll let you work out the angle.
The average speed of a moving object is the rate of change of a certain distance with respect with time. It is equal to the total distance that was traveled by the object over the total time it takes to travel that distance. For this problem we need to assume that the total distance that was traveled would be equal to 120 miles. So, for the first half of the distance or 60 miles at a speed of 30 miles per hour, the time taken would be two hours. For the remaining 60 miles at a speed of 60 miles per hour, 1 hour is total time traveled. So, we calculate the average speed as follows:
Average speed = total distance / total time
Average speed = 120 miles / 2 hr + 1 hr
Average speed = 40 mi / hr
Answer:
Okay I'll do it right now
Explanation:
:)
Answer:
not really the same question but it has the same answers lol it's confirmation bias
Explanation: