I don’t think I will have any time to go
The acceleration of an object depends directly upon the net force acting upon the object, and inversely upon the mass of the object. As the force acting upon an object is increased, the acceleration of the object is increased. As the mass of an object is increased, the acceleration of the object is decreased.
Answer:
4.44s
Explanation:
A 34-kg child on an 18-kg swing set swings back and forth through small angles. If the length of the very light supporting cables for the swing is 4.9 m, how long does it take for each complete back-and-forth swing? Assume that the child and swing set are very small compared to the length of the cables
since the mass of the child and that of the swing is negligible, the masses wont be involved in the calculation
T=2π√L/g
g=acceleration due to gravity which is 9.81m/s2
the length of the supporting cable is 4.9m
T the period
period is the time required to make a complete oscillation
T=2*π√4.9/9.81
T=2*π*0.706
T=4.44s
4.44s
Ooh. You don't knock on your own hotel door- <span> a knock at the door is your key word.
</span>x
Answer:
Mass of object is 0.5kg
Explanation:
Given the following data;
Force = 6N
Acceleration = 12m/s²
Mass =?
Force is given by the multiplication of mass and acceleration.
Mathematically, Force is;
Where;
F represents force.
m represents the mass of an object.
a represents acceleration.
Making mass (m) the subject, we have;
Substituting into the equation;
Mass, m = 0.5kg.
Therefore, the mass of the object is 0.5kg