Answer:
The ball stops instantaneously at the topmost point of the motion.
Explanation:
Assume we have thrown a ball up in the air. For that we have given a force on the ball and it acquires an initial velocity in the upward direction.
The forces that resist the motion of the ball in the upward direction are the force of gravity and air resistance. The ball will instantaneously come to rest when the velocity of the ball reduces to zero.
The two forces acting in the downward direction reduces its speed continuously and it becomes zero at the topmost point.
Answer:
The focal length of a lens is refers to the distance from the center of the lens to the principal foci.
Answer:
72 m/s
Explanation:
D1 = 3 cm, v1 = 2 m/s
D2 = 0.5 cm,
Let the velocity at narrow end be v2.
By use of equation of continuity
A1 v1 = A2 v2
3.14 × 3 × 3 × 2 = 3.14 × 0.5 ×0.5 × v2
v2 = 72 m/s
Answer;
the potential difference
The magnitude of the electric current is directly proportional to the potential difference of the electric field
Explanation;
An electric current results from the collective movement of free charges under the effect of an electric field. An electric field exists and can be observed in the space around a single charge or a number of charges.
Electric fields cause charges to move. It stands to reason that an electric field applied to some material will cause currents to flow in that material. In other words, the current density is directly proportional to the electric field. The constant of proportionality σ is called the material’s conductivity.
Answer:
lipids are insoluble in water which is why lipids are often found in biological membranes and other waterproof coverings.