Electronic configuration of Rb: 2.8.8.8.8.3
Valence electron is 3....
Answer:
frequency = 0.47×10⁴ Hz
Explanation:
Given data:
Wavelength of wave = 6.4× 10⁴ m
Frequency of wave = ?
Solution:
Formula:
Speed of wave = wavelength × frequency
Speed of wave = 3 × 10⁸ m/s
Now we will put the values in formula.
3 × 10⁸ m/s = 6.4× 10⁴ m × frequency
frequency = 3 × 10⁸ m/s / 6.4× 10⁴ m
frequency = 0.47×10⁴ /s
s⁻¹ = Hz
frequency = 0.47×10⁴ Hz
Thus the wave with wavelength of 6.4× 10⁴ m have 0.47×10⁴ Hz frequency.
Data: molar mass 470 g/mol
Percent composition:
Hg = 85.0%
Cl = 15.0%
Solution:
1) Convert % to molar ratios
A. Base: 100 g
=> Hg = 85.0 g / 200.59 g/mol = 0.4235 mol
Cl = 15.0 g / 35.45 g/mol = 0.4231 mol
B. divide by the higher number and round to whole number
Hg = 0.4325 / 0.4231 = 1.00
Cl = 0.4231 / 0.4231 = 1.00
=> Empirical formula = Hg Cl
2) Find the mass of the empirical formula:
HgCl: 200.59 g/mol + 35.45 g/mol = 236.04
3) Determine how many times is the empirical mass contained in the molecular mass:
470 g/mol / 236.04 = 1.99 ≈ 2
=> Molecular formula = Hg2 Cl2.
Answers:
Empirical formula HgCl
Molecular Formula Hg2Cl2
Answer:
86,400 seconds in a day.
Explanation:
There are 24 hrs in a day. So there are 2460 mins in a day. ( 1hr=60 mins) So there are 246060 seconds in a day. (1 min = 60 seconds) Therefore 86,400 seconds in a day.
Answer:
B
101L
Explanation:
We use the ideal gas relation
PV = nRT
P = pressure = 101.3KPa
V = volume = ?
n = number of moles = 4.5moles
T = Temperature = 273.15K
R = molar gas constant = 8.314J/mol.k
Rearranging the equation to make V the subject of the formula yields :
V = nRT/P
= ( 4.5 × 8.314 × 273.15) ÷ 101.3
= 10,219.361 ÷ 101.3 = 100.88L which is apprx 101L