Answer:
The temperature should be higher than 437.9 Kelvin (or 164.75 °C) to be spontaneous
Explanation:
<u>Step 1:</u> Data given
ΔH∘=20.1 kJ/mol
ΔS is 45.9 J/K
<u>Step 2:</u> When is the reaction spontaneous
Consider temperature and pressure = constant.
The conditions for spontaneous reactions are:
ΔH <0
ΔS > 0
ΔG <0 The reaction is spontaneous at all temperatures
ΔH <0
ΔS <0
ΔG <0 The reaction is spontaneous at low temperatures ( ΔH - T*ΔS <0)
ΔH >0
ΔS >0
ΔG <0 The reaction is spontaneous at high temperatures ( ΔH - T*ΔS <0)
<u>Step 3:</u> Calculate the temperature
ΔG <0 = ΔH - T*ΔS
T*ΔS > ΔH
T > ΔH/ΔS
In this situation:
T > (20100 J)/(45.9 J/K)
T > 437.9 K
T > 164.75 °C
The temperature should be higher than 437.9 Kelvin (or 164.75 °C) to be spontaneous
Carbon dioxide is a noble gas.
Aluminium belongs to 13th group of periodic table. It undergoes oxidation to given Al^+3 .
It is observed that when aluminium is added to a solution of copper sulphate the colour of the solution changes from blue to grey. It is due to formation of grey coloured solution of aluminium sulphate as
2Al^+3 + 3SO4^-2 ---> Al2(SO4)3
Answer:
the temperature of the star
Explanation:
The color of stars usually indicates the temperature of the star.
A star that is relatively cold usually shows a typical red color.
The hottest stars have a blue color.
- These star colors have been used by astronomers to determine their temperature.
- A broad spectrum between blue, the hottest color, and red the coldest is used.
- Class O stars are usually the blue colored ones
- Class M is the coldest with red color