Answer: Option (B) is the correct answer.
Explanation:
Equilibrium constant is defined as the relationship present between the amounts of products and reactants which are there at equilibrium in a reversible chemical reaction at a given temperature.
For example, 
Mathematically, ![K_{eq} = [C][D]](https://tex.z-dn.net/?f=K_%7Beq%7D%20%3D%20%5BC%5D%5BD%5D)
As the value of equilibrium constant depends on rate constants of the forward and reverse reactions. And, this rate of reaction also changes with change in pressure and temperature.
Therefore, it will also lead to change in equilibrium constant but it does not depend on initial amount pf reactants.
Thus, we can conclude that in general, the value of the equilibrium constant for a chemical reaction does NOT depend on the initial amounts of reactants present.
A chemical change affects on the molecular level of matter, which makes it irreversible. Combustion is a pretty good exmple. Physical changes are reversible and dont alter the formula. Hope this helped!
Answer:
number of carbon-carbon single (C - C) bonds: 1
number of carbon-hydrogen single (C H) bonds: 5
number of nitrogen-hydrogen sing le (N H) bonds:2
number of lone pairs: 1
Explanation:
Ethanamine is a colourless gas having a strong 'ammonia- like' odour. It contains the -NH2 group which makes it an amine. It contains one carbon-carbon bond, five carbon-hydrogen bonds and two nitrogen-hydrogen bonds.
Nitrogen, being sp3 hybridized in the compound has a lone pair of electrons localized on one of the sp3 hybridized orbitals of nitrogen while one sp3 hybridized orbital of nitrogen is used to form a carbon-nitrogen bond. The other two sp3 hybridized orbitals on nitrogen are used to form the two nitrogen-hydrogen bonds.