Answer:
An increase in air temperature because of its compression.
Explanation:
The Gay-Lussac's Law states that a gas pressure is directly proportional to its temperature in an enclosed system to constant volume.
<em>where P: is the gas pressure, T: is the gas temperature and k: is a constant.</em>
Therefore, due to Gay-Lussac's Law, when the plunger is pushed down very rapidly, the pressure of the air increase, which leads to its temperature increase. That is why cotton flashes and burns.
I hope it helps you!
Answer:
1) Lightning, you see the lightning first and then hear the thunder.
2)When a person far away from you hits a ball with a bat, you can see them striking the ball first and then you will hear the sound of ball striking against the bat.
Answer:
Exercise 1;
The centripetal acceleration is approximately 94.52 m/s²
Explanation:
1) The given parameters are;
The diameter of the circle = 8 cm = 0.08 m
The radius of the circle = Diameter/2 = 0.08/2 = 0.04 m
The speed of motion = 7 km/h = 1.944444 m/s
The centripetal acceleration = v²/r = 1.944444²/0.04 ≈ 94.52 m/s²
The centripetal acceleration ≈ 94.52 m/s²
Answer:
Because space is a void with no air flow
Explanation:
Answer:
remains the same
Explanation:
Momentum refers to the quantity of motion of a body. When any body of mass moves, it possess momentum. Numerically,
Momentum = mass x velocity
i.e. momentum is the product of the mass x velocity
Momentum of a body is always conserved.
In the context, the skateboard has certain momentum before Freddy lands on it. After Freddy lands, the momentum of skateboard remains the same, there is no change in the momentum.
This is because, here the momentum is conserved. After Freddy lands on the skateboard, the total mass on the skateboard increases and so the velocity decreases making the momentum same before the landing.