Answer: (e) The pressure in the container increases but does not double.
Explanation:
To solve this, we need to first remember our gas law, Boyle's law states that the pressure and volume of a gas have an inverse relationship. That is, If volume increases, then pressure decreases and vice versa, when temperature is held constant. Therefore, increasing the volume in this case does not double the pressure owning to out gas law, but an increase in pressure would be noticed if temperature is constant
Answer:
waste gas he should use algae
Answer:
4121 years
Explanation:
From;
0.693/t1/2 = 2.303/t log No/N
t1/2= half life of the carbon-14
No= count rate of the living tissue
N= count rate of the sample
t = age of the sample
0.693/5730 =2.303/t log (13.5/8.2)
1.21 * 10^-4 = 2.303/t * 0.2165
1.21 * 10^-4 = 0.4986/t
t = 0.4986/1.21 * 10^-4
t = 4121 years
Answer:
53.6 g of N₂H₄
Explanation:
The begining is in the reaction:
N₂(g) + 2H₂(g) → N₂H₄(l)
We determine the moles of each reactant:
59.20 g / 28.01 g/mol = 2.11 moles of nitrogen
6.750 g / 2.016 g/mol = 3.35 moles of H₂
1 mol of N₂ react to 2 moles of H₂
Our 2.11 moles of N₂ may react to (2.11 . 2) /1 = 4.22 moles of H₂, but we only have 3.35 moles. The hydrogen is the limiting reactant.
2 moles of H₂ produce at 100 % yield, 1 mol of hydrazine
Then, 3.35 moles, may produce (3.35 . 1)/2 = 1.67 moles of N₂H₄
Let's convert the moles to mass:
1.67 mol . 32.05 g/mol = 53.6 g
It would most likely be a observation or hypothesis