Answer:
Option B will require a shorter wave length of light.
Explanation:
The bonding between Ozone (O3) and Oxygen (O2) can be used to explain why the breaking of oxygen into Oxygen radicals will require a shorter wave length.
- The bond between Oxygen (O2) is a double bond while Ozone (O3) has an intermediate bond between a double bond and a single bond.
- The bond order of Oxygen (O2) is equals 2 while that of Ozone (O3) is 1.5. Since the bond order of oxygen is higher, it will require more energy to break the bond compared to breaking the Ozone (O3) bond.
- Recall that Energy is inversely proportional to wave length.
- So it will require a shorter wave length to break the Oxygen (O2) into its radicals.
When the temperature and the volume of the gas stored in the container are high then the number of the moles will be measured accurately. Thus, options A and B are correct.
<h3>What is the ideal gas law?</h3>
The ideal gas law is the establishment of the relation between the elements like the moles, pressure, temperature, and the volume of the gas containing the particle.
The ideal gas states:
PV = nRT
With an increase in the temperature, the number of particles that collides increases as the kinetic energy increases. The particle of the container is more when the volume of the gas is more.
Therefore, in options A and B high temperature and volume increase the accuracy.
Learn more about ideal gas here:
brainly.com/question/14552813
#SPJ1
Answer:
Your answer has to be B. Camouflage
Explanation:
The chemical change can occur can be find if you mix the two solids in one direction
It bonds atoms together to create molecules