Answer:
∆H > 0
∆Srxn <0
∆G >0
∆Suniverse <0
Explanation:
We are informed that the reaction is endothermic. An endothermic reaction is one in which energy is absorbed hence ∆H is positive at all temperatures.
Similarly, absorption of energy leads to a decrease in entropy of the reaction system. Hence the change in entropy of the reaction ∆Sreaction is negative at all temperatures.
The change in free energy for the reaction is positive at all temperatures since ∆S reaction is negative then from ∆G= ∆H - T∆S, we see that given the positive value of ∆H, ∆G must always return a positive value at all temperatures.
Since entropy of the surrounding= - ∆H/T, given that ∆H is positive, ∆S surrounding will be negative at all temperatures. This is so because an endothermic reaction causes the surrounding to cool down.
The molarity of the stock solution is 1.25 M.
<u>Explanation:</u>
We have to find the molarity of the stock solution using the law of volumetric analysis as,
V1M1 = V2M2
V1 = 150 ml
M1 = 0.5 M
V2 = 60 ml
M2 = ?
The above equation can be rearranged to get M2 as,
M2 = 
Plugin the values as,
M2 = 
= 1.25 M
So the molarity of the stock solution is 1.25 M.
Answer:
You didn't show which element it is. The proton is the atomic number, the electron is the same number of protons, and the neutron is the atomic mass rounded to the nearest whole number minus the proton.
Explanation:
In the U.S.A, it is the Mississippi River Basin. But then there is the Gulf of Mexico.
<h3>Answer:</h3>
Strontium (Sr)
<h3>Explanation:</h3>
The condition given in statement is the presence of two valence electron. Hence, first we found the electronic configuration of given atoms as follow;
Rubidium [Kr] 5s¹
Strontium [Kr] 5s²
Zirconium [Kr] 4d² 5s²
Silver [Kr] 4d¹⁰ 5s¹
From above configurations it is cleared that only Strontium and Zirconium has two electrons in its valence shell.
We also know that s-block elements are more reactive than transition elements due to less shielding effect in transition elements hence, making it difficult for transition metals to loose electrons as compared to s-block elements. Therefore, we can conclude that Strontium present in s-block with two valence electrons is the correct answer.