Answer:
Mass, M = 1000 kg
Speed, v = 90 km/h = 25 m/s
time, t = 6 sec.
Distance:
Force:
Answer: the maximum heigth of the stadium at ist back wall is 151.32 ft
Explanation:
1. use the position (x) equation in parobolic movement to find the time (t)
565 ft = [frac{176 ft}{1 s\\}[/tex] * cos (35°) * t
t= 3.92 s
2. use the position (y) equation in parabolic movement to find de maximun heigth the ball reaches at 565 ft from the home plate.
y= [[frac{176 ft}{1 s\\}[/tex] * sen (35°) * 3.92 s] -
y= 148.32 ft
3. finally add the 3 ft that exist between the home plate and the ball
148.32 ft + 3 ft = 151.32
<h2>Answers:</h2><h2 /><h2>a) Arrow B</h2><h2>b) Arrow E</h2>
Explanation:
Refraction is a phenomenon in which a wave (the light in this case) bends or changes its direction <u>when passing through a medium with a refractive index different from the other medium.</u> Where the Refractive index is a number that describes how fast light propagates through a medium or material.
According to this, if we observe the rays A an D passing throgh the biconcave lens, we will have two mediums:
1) The air
2)The material of the biconcave lens
This two mediums have different refractive indexes, hence the rays will change the direction.
-For the incident ray A, the corresponding refractive ray is B, because is the ray that bends after passing throgh the lens
-For the incident ray D, the refracted ray is E following the same principle.
Explanation:
both are areas of land that drain to particular water bodies such as lakes