First, we must find the vertical distance traveled upwards by the ball due to the throw. For this, we will use the formula:
2as = v² - u²
Because the final velocity v is 0 in such cases
s = -u²/2a; because both u and a are downwards, the negative sign cancels
s = 14.5² / 2*9.81
s = 10.72 meters
Next, to find the time taken to reach the ground, we need the height above the ground. This is:
45 + 10.72 = 55.72 m
We will use the formula
s = ut + 0.5at²
to find the time taken with the initial velocity u = 0.
55.72 = 0.5 * 9.81 * t²
t = 3.37 seconds
Answer:
B.convection currents in the mantle
Explanation:
Answer:
x = 11.23 m
Explanation:
For this interesting exercise, we must use angular kinematics, linear kinematics and the relationship between angular and linear quantities.
Let's reduce to SI system units
θ = 155 rev (2pi rad / rev) = 310π rad
α = 2.00rev / s2 (2pi rad / 1 rev) = 4π rad / s²
Let's look for the angular velocity at the time the piece is released, with starting from rest the initial angular velocity is zero (wo = 0)
w² = w₀² + 2 α θ
w =√ 2 α θ
w = √(2 4pi 310pi)
w = 156.45 rad / s
The relationship between angular and linear velocity
v = w r
v = 156.45 0.175
v = 27.38 m / s
In this part we have the linear speed and the height that it travels to reach the floor, so with the projectile launch equations we can find the time it takes to arrive
y = t - ½ g t²
As it leaves the highest point its speed is horizontal
y = 0 - ½ g t²
t = √ (-2y / g)
t = √ (-2 (-0.820) /9.8)
t = 0.41 s
With this time we calculate the horizontal distance, because the constant horizontal speed
x = vox t
x = 27.38 0.41
x = 11.23 m
Answer:
At Saturn's center is a dense core of metals like iron and nickel surrounded by rocky material and other compounds solidified by the intense pressure and heat. It is enveloped by liquid metallic hydrogen inside a layer of liquid hydrogen—similar to Jupiter's core but considerably smaller
Explanation:
Answer: acceleration due to gravity of planet a would be twice that of planet b. Given that the radius are thesame.
Explanation:
Acceleration due to gravity is as a result of the gravitational force of attraction of a planet to its centre.
g = GM/r^2
Where;
g = acceleration due to gravity
G = gravitational constant
M = mass of planet
r = radius of planet
Given that the two planet have the same radius, if the mass of planet a is twice the mass of planet b the the acceleration due to gravity of planet a would be twice that of planet b, because acceleration due to gravity is directly proportional to the mass of the planet.