In order to answer this question, the units of volume must be consistent. In this problem, we decide the unit m3 to be uniform. Option A is equal to 12 m3, option b is equal to 1.2x10^8/100^3 or 120 m3. Option C is 2.0 x10^4/ 10^3 or 20 m3. Option D is 1.2x10^8/ 1000^3 or 0.12 m3. The greatest volume is option b. 120 m3.
Explanation:
2H2 + O2 = 2H2O
2mol. 1mol. 2mol
2mol reacts with 1mol
13mol reacts with x
x=<u>13mol</u><u> </u><u>×</u><u> </u><u>1mol</u>
<u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u>2mol</u>
x= <u>13mol</u>
<u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>2mol
x= 6.5mol of oxygen
Answer: The of a solution is M
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per liter of the solution.
where,
n = moles of solute
= volume of solution in ml
moles of =
Now put all the given values in the formula of molality, we get
pH or pOH is the measure of acidity or alkalinity of a solution.
According to stoichiometry,
1 mole of gives 1 mole of
Thus moles of gives = moles of
Putting in the values:
Thus the of a solution prepared by dissolving 0.0912 g of hydrogen chloride in sufficient pure water to prepare 250.0 ml of solution is M
Answer:
The simplified mechanism and products are on the picture.
Explanation:
If we have the symmetrical alkene the addition of mercury and OH group is not regioselective but when we have more donors for one of Carbons in alkene then the OH group will go there.