The entire electromagnetic spectrum, from the lowest to the highest frequency (longest to shortest wavelength), includes all radio waves (e.g., commercial radio and television, microwaves, radar), infrared radiation, visible light, ultraviolet radiation, X-rays, and gamma rays.
False, There is other things aswell
The combined amount of kinetic and potential energy of its molecules
Answer:
Im only 12 and i need the points so ima try my best.
Explanation:
574.780616 m6 kg3 s-6 K-3 mol-3
Answer:
<h3>JAWAB SECEPATNYA pliss</h3><h3 /><h3>Anda memiliki rangkaian paralel 10 volt, dengan 2 resistor di atasnya. Berapakah tegangan pada</h3><h3>resistor pertama? Di seberang kedua?</h3><h3 /><h3>(saya akan menandai tercerdas tolong bantu)</h3>
Explanation:
Hukum Ohm
= tegangan
= kuat arus
= ketahanan
Kalau kamu mau mencari tegangan listrik, kamu gunakan rumus V = I.R. Kalau ternyata kamu perlu mencari kuat arus listrik, maka gunakan rumus I = V/R. Nah, kalau yang kamu cari adalah hambatan listrik, maka gunakan rumus R = V/I.
Answer:
The ball would have landed 3.31m farther if the downward angle were 6.0° instead.
Explanation:
In order to solve this problem we must first start by doing a drawing that will represent the situation. (See picture attached).
We can see in the picture that the least the angle the farther the ball will go. So we need to find the A and B position to determine how farther the second shot would go. Let's start with point A.
So, first we need to determine the components of the velocity of the ball, like this:






we pick the positive one, so it takes 0.317s for the ball to hit on point A.
so now we can find the distance from the net to point A with this time. We can find it like this:



Once we found the distance between the net and point A, we can similarly find the distance between the net and point B:







t= -0.9159s or t=0.468s
we pick the positive one, so it takes 0.468s for the ball to hit on point B.
so now we can find the distance from the net to point B with this time. We can find it like this:



So once we got the two distances we can now find the difference between them:

so the ball would have landed 3.31m farther if the downward angle were 6.0° instead.