Answer:
Explanation:
Dalton's atomic theory proposed that all matter was composed of atoms, indivisible and indestructible building blocks. While all atoms of an element were identical, different elements had atoms of differing size and mass.
In 1897, J.J. Thomson discovered the electron by experimenting with a Crookes, or cathode ray, tube. He demonstrated that cathode rays were negatively charged. In addition, he also studied positively charged particles in neon gas.
Rutherford overturned Thomson's model in 1911 with his well-known gold foil experiment in which he demonstrated that the atom has a tiny and heavy nucleus. Rutherford designed an experiment to use the alpha particles emitted by a radioactive element as probes to the unseen world of atomic structure.
The Bohr model shows the atom as a small, positively charged nucleus surrounded by orbiting electrons. Bohr was the first to discover that electrons travel in separate orbits around the nucleus and that the number of electrons in the outer orbit determines the properties of an element.
Answer:
A
Explanation:
I looked up aromatic hydrocarbon and this one looks like a replica of benzene
Answer:
A camel stores fat in its hump, while the cactus stores water in its thick stem.
Explanation:
To determine what gas is this, we use Graham's Law of Effusion where it relates the rates of effusion of gases and their molar masses. We do as follows:
r1/r2 = √(M2 / M1)
Let 1 be the the unkown gas and 2 the H2 gas.
r1/r2 = 0.225
M2 = 2.02 g/mol
0.225 = √(2.02 / M1)
M1 = 39.90 g/mol
From the periodic table of elements, most likely, the gas is argon.
Answer:
<h2>127.57 moles</h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have

We have the final answer as
<h3>127.57 moles</h3>
Hope this helps you