The equation relating velocity and wavelength is written below:
v = λf
where λ is the wavelength in m while f is frequency in 1/s.
Let's determine first the frequency from the speed of light:
c = distance/time, where c is the speed of light equal to 3×10⁸ m/s
3×10⁸ m/s = (300 mm)(1 m/1000 mm)/ time
time = 1×10⁻⁹ seconds
Since f = 1/t,
f = 1/1×10⁻⁹ seconds = 10⁹ s⁻¹
Thus,
v = (795×10⁻⁹ m)(10⁹ s⁻¹)
v = 795 m/s
Answer: the answer is a i suppose
Explanation:
Answer:
Molality = 0.0862 mole/kg
Explanation:
Molality = (number of moles of solute)/(mass of solvent in kg)
Number of moles of solute = (mass of Creatinine in the blood sample)/(Molar mass of Creatinine)
To obtain the mass of creatinine in 10 mL of blood. We're told that 1 mg of Creatinine is contained in 1 decilitre of blood.
1 decilitre = 100 mL
1 mg of Creatinine is contained in 100 mL of blood
x mg of Creatinine is contained in 10 mL of blood.
x = (1×10/100) = 0.1 mg = 0.0001 g
Molar mass of Creatinine (C₄H₇N₃O) = 113.12 g/mol
Number of moles of Creatinine in the 10 mL blood sample = (0.0001/113.12) = 0.000000884 moles
Mass of 10 mL of blood = density × volume = 1.025 × 10 = 10.25 mg = 0.01025 g = 0.00001025 kg
Molality of normal creatinine level in a 10.0-ml blood sample = (0.000000884/0.00001025)
Molality = 0.0862 moles of Creatinine per kg of blood.
Hope this Helps!!!
Answer: 1.46moles
Explanation:
Applying PV= nRT
P= 1atm, V= 32.6L, R= 0.082, T = 273K
Substitute and simplify
1×32.6/(0.082×273)=n
n= 1.46moles