D represents ion-dipole forces that are stronger than the force C.
Explanation:
D represents the ion-dipole force.
C represents the H-bonding forces.
ion-dipole force is a force that is due to electrostatic attraction and has a dipole between an ion and a neutral molecule.
It is electrostatic in nature.
A hydrogen bond is the force between the hydrogen with the electro negative atom of one molecule, to electro negative atom of some other molecule. such as: O, F, N
Ion dipole force is stronger than the H-bonding.
Answer:
increase the chemical rate
Answer:
Mitochondria are abundantly present in mammalian cells. Their fraction varies from tissue to tissue, ranging from <1% (volume) in white blood cells to 35% in heart muscle cells. However, mitochondria should not be thought of as single entities, but rather a dynamic network that continuously undergoes fission and fusion processes. In skeletal muscle, mitochondria exist as a reticular membrane network. The subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria are located in distinct subcellular regions, and they possess subtle differences in biochemical and functional properties that are characterized by their anatomical locations. SS mitochondria lie directly beneath the sarcolemmal membrane and the IMF mitochondria are located in close contact with the myofibril. Their different properties are likely to influence their capacity for adaptation. SS mitochondria account for 10-15% of the mitochondrial volume and this population has been shown to be more susceptible to adaptation than the IMF mitochondria. However, the IMF mitochondria were found to have higher rates of protein synthesises, enzyme activities and respiration (1).
Explanation:
The question is incomplete, here is the complete question:
Silicon reacts with carbon dioxide to form silicon carbide and silicon dioxide. Write the balanced chemical equation.
<u>Answer:</u> The balanced chemical equation is written below.
<u>Explanation:</u>
Every balanced chemical equation follows law of conservation of mass.
A balanced chemical equation is defined as the equation in which total number of individual atoms on the reactant side is equal to the total number of individual atoms on product side.
The balanced chemical equation for the reaction of silicon and carbon dioxide follows:

By Stoichiometry of the reaction:
2 moles of silicon reacts with 1 mole of carbon dioxide gas to produce 1 mole of silicon carbide and 1 mole of silicon dioxide
Hence, the balanced chemical equation is written above.