1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aniked [119]
3 years ago
5

ad for the distance from the sun tothe earth is 1.5 x 10"m. how long does it take for light from ths sun to reach the eath? give

your answer n seconds
Physics
1 answer:
Alexandra [31]3 years ago
5 0

Answer:

About 8.3 minutes

Explanation:

Use the formula for velocity as the distance covered by the light divided the time it takes: [tex]velocity=\frac{distance}{time}[/tex]

Use the information about the speed of light in vacuum: 300000000 \frac{m}{s} = 3*10^{8} \frac{m}{s}

and the information you are given regarding the distance between Sun and Earth: 1.5 * 10^{11} m

to solve the first velocity equation for the unknown time "t":

velocity=\frac{distance}{time} \\3*10^8\frac{m}{s} =\frac{1.5*10^11 m}{t} \\t=\frac{1.5*10^11 }{3*10^8} s= 500 s

we can convert second into minutes by dividing by 60: 500 s = 500/60 minutes = 8.3333... minutes

You might be interested in
A proton, which is the nucleus of a hydrogen atom, can be modeled as a sphere with a diameter of 2.4 fm and a mass of 1.67 10-27
Step2247 [10]
For the answer to the question above asking to d<span>etermine the density of the proton. 
</span>Density is mass over volume. 

The volume of a sphere is 4πr³/3. r is half the diameter. 

So the density would be 2.3×10¹⁷ kg/m³. 
I hope my answer helped you. Feel free to ask more questions. Have a nice day!
8 0
4 years ago
Read 2 more answers
A proton moving at 8.00 106 m/s through a magnetic field of magnitude 1.72 T experiences a magnetic force of magnitude 7.20 10-1
gladu [14]

Answer:

19.1 deg

Explanation:

v = speed of the proton = 8 x 10⁶ m/s

B = magnitude of the magnetic field = 1.72 T

q = magnitude of charge on the proton = 1.6 x 10⁻¹⁹ C

F = magnitude of magnetic force on the proton = 7.20 x 10⁻¹³ N

θ = Angle between proton's velocity and magnetic field

magnitude of magnetic force on the proton is given as

F = q v B Sinθ

7.20 x 10⁻¹³ = (1.6 x 10⁻¹⁹) (8 x 10⁶) (1.72) Sinθ

Sinθ = 0.327

θ = 19.1 deg

4 0
3 years ago
A small box of mass m1 is sitting on a board of mass m2 and length L. The board rests on a frictionless horizontal surface. The
Nadusha1986 [10]

Answer:

The constant force with least magnitude that must be applied to the board in order to pull the board out from under the box is \left( {{m_1} + {m_2}} \right){\mu _{\rm{s}}}

Explanation:

The Newton’s second law states that the net force on an object is the product of mass of the object and final acceleration of the object. The expression of newton’s second law is,

\sum {F = ma}

Here, is the sum of all the forces on the object, mm is mass of the object, and aa is the acceleration of the object.

The expression for static friction over a horizontal surface is,

F_{\rm{f}}} \leq {\mu _{\rm{s}}}mg

Here, {\mu _{\rm{s}}} is the coefficient of static friction, mm is mass of the object, and g is the acceleration due to gravity.

Use the expression of static friction and solve for maximum static friction for box of mass {m_1}

Substitute  for in the expression of maximum static friction {F_{\rm{f}}} = {\mu _{\rm{s}}}mg

{F_{\rm{f}}} = {\mu _{\rm{s}}}{m_1}g

Use the Newton’s second law for small box and solve for minimum acceleration aa to pull the box out.

Substitute  for , [/tex]{m_1}[/tex] for in the equation .

{F_{\rm{f}}} = {m_1}a

Substitute {\mu _{\rm{s}}}{m_1}g for {F_{\rm{f}}} in the equation {F_{\rm{f}}} = {m_1}a

{\mu _{\rm{s}}}{m_1}g = {m_1}a

Rearrange for a.

a = {\mu _{\rm{s}}}g

The minimum acceleration of the system of two masses at which box starts sliding can be calculated by equating the pseudo force on the mass with the maximum static friction force.

The pseudo force acts on in the direction opposite to the motion of the board and the static friction force on this mass acts in the direction opposite to the pseudo force. If these two forces are cancelled each other (balanced), then the box starts sliding.

Use the Newton’s second law for the system of box and the board.

Substitute for for in the equation .

{F_{\min }} = \left( {{m_1} + {m_2}} \right)a

Substitute for in the above equation .

{F_{\min }} = \left( {{m_1} + {m_2}} \right){\mu _{\rm{s}}}g

The constant force with least magnitude that must be applied to the board in order to pull the board out from under the box is \left( {{m_1} + {m_2}} \right){\mu _{\rm{s}}}g

There is no friction between the board and the surface. So, the force required to accelerate the system with the minimum acceleration to slide the box over the board is equal to total mass of the board and box multiplied by the acceleration of the system.

5 0
3 years ago
Julio blows air across his hot bowl of soup. The tiny ripples he creates are similar to _____.
Allushta [10]

The tiny ripples on the soup are not only similar to wind-generated
waves ... they ARE wind-generated waves.  This is a big part of the
reason why they bear such an uncanny resemblance.

8 0
4 years ago
Read 2 more answers
An insulated beaker with negligible mass contains 0.250 kg of water at 75.0C. How many kilograms of ice at -20.0C must be droppe
kkurt [141]

Answer:

The amount of kilograms of ice at -20.0°C that must be dropped into the water to make the final temperature of the system 40.0°C = 0.0674 kg

Explanation:

Heat gained by ice in taking the total temperature to 40°C = Heat lost by the water

Total Heat gained by ice = Heat used by ice to move from -20°C to 0°C + Heat used to melt at 0°C + Heat used to reach 40°C from 0°C

To do this, we require the specific heat capacity of ice, latent heat of ice and the specific heat capacity of water. All will be obtained from literature.

Specific heat capacity of ice = Cᵢ = 2108 J/kg.°C

Latent heat of ice = L = 334000 J/kg

Specific heat capacity of water = C = 4186 J/kg.°C

Heat gained by ice in taking the total temperature to 40°C = mCᵢ ΔT + mL + mC ΔT = m(2108)(0 - (-20)) + m(334000) + m(4186)(40 - 0) = 42160m + 334000m + 167440m = 543600 m

Heat lost by water = mC ΔT = 0.25 (4186)(75 - 40) = 36627.5 J

543600 m = 36627.5

m = 0.0674 kg = 67.4 g of ice.

3 0
3 years ago
Other questions:
  • PLEASE HELP!! 50 PTS!!
    6·2 answers
  • When adding vectors in the x and y direction, what must you do to find the magnitude and direction of the resultant vector?
    8·1 answer
  • Which best describes how energy changes form in a car's engine?
    5·2 answers
  • A water dwelling slug like animal
    14·2 answers
  • What is matter? Give a grade 10/11/12 understanding.
    14·1 answer
  • Which of the following is NOT an argument for showing that the Earth must be round: a. during an eclipse of the Moon, the shadow
    13·1 answer
  • Someone please help​
    7·1 answer
  • What is the weight of a spring balance when the point is 30​
    8·1 answer
  • A race car traveling at 44m/s slows at a constant rate to a velocity of 22m/s over 11 seconds , how far does it move during this
    12·1 answer
  • A man walks 6 km north, then turns and walks 6 km east what is the resultant and angle
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!