The correct answer for this question is this one: "C. Neither Natalie nor Will." Natalie and Will are discussing socialization. Natalie says that socialization occurs when an animal becomes accustomed to the people in the household. <span>Will says that socialization is easily attained if the animal is first exposed to humans after 12 weeks of age.</span>
The work done to pull the sled up to the hill is given by

where
F is the intensity of the force
d is the distance where the force is applied.
In our problem, the work done is

and the distance through which the force is applied is

, so we can calculate the average force by re-arranging the previous equation and by using these data:
Answer:
53.64 m/s
Explanation:
Applying,
a = (v-u)/t............. Equation 1
Where a = acceleration of the car, v = final velocity of the car, u = initial velocity of the car, t = time.
make u the subject of the equation
u = v-at............. Equation 2
From the question,
Given: a = -12 mph/s = -5.364 m/s², t = 10 seconds, v = 0 m/s (comes to stop)
Substitute these values into equation 2
u = 0-(-5.364×10)
u = 0+53.64
u = 53.64 m/s
Answer:
Explanation:
Given that,
Assume number of turn is
N= 1
Radius of coil is.
r = 5cm = 0.05m
Then, Area of the surface is given as
A = πr² = π × 0.05²
A = 7.85 × 10^-3 m²
Resistance of
R = 0.20 Ω
The magnetic field is a function of time
B = 0.50exp(-20t) T
Magnitude of induce current at
t = 2s
We need to find the induced emf
This induced voltage, ε can be quantified by:
ε = −NdΦ/dt
Φ = BAcosθ, but θ = 90°, they are perpendicular
So, Φ = BA
ε = −NdΦ/dt = −N d(BA) / dt
A is a constant
ε = −NA dB/dt
Then, B = 0.50exp(-20t)
So, dB/dt = 0.5 × -20 exp(-20t)
dB/dt = -10exp(-20t)
So,
ε = −NA dB/dt
ε = −NA × -10exp(-20t)
ε = 10 × NA exp(-20t)
Now from ohms law, ε = iR
So, I = ε / R
I = 10 × NA exp(-20t) / R
Substituting the values given
I = 10×1× 7.85 ×10^-3×exp(-20×2)/0.2
I = 1.67 × 10^-18 A