The steps in the heating of a metal seat in a park are:
Step 1: Heat travels from the sun to Earth
Step 2: Heat travels through atmosphere to the top of the seat
Step 3: Heat from the top of the seat travels through the seat to the lower parts of the seat.
-- Heat is transferred by radiation in Step 1 and Step 2. <em>(B)</em>
-- From the top of the seat to the bottom, heat is transferred by conduction.
There's no convection happening anywhere in the park-hot-seat scenario.
25/1500 is equal to 0.8/x
0.8*1500 is equal to 1200
1200/25 is equal to 48 N
Answer:
C. 85%
Explanation:
A cylinder fitted with a piston exists in a high-pressure chamber (3 atm) with an initial volume of 1 L. If a sufficient quantity of a hydrocarbon material is combusted inside the cylinder to produce 1 kJ of energy, and if the volume of the chamber then increases to 1.5 L, what percent of the fuel's energy was lost to friction and heat?
A. 15%
B. 30%
C. 85%
D. 100%
work done by the system will be
W=PdV
p=pressure
dV=change in volume
3tam will be changed to N/m^2
3*1.01*10^5
W=3.03*10^5*(1.5-1)
convert 0.5L to m^3
5*10^-4
W=3.03*10^5*5*10^-4
W=152J
therefore
to find the percentage used
152/1000*100
15%
100%-15%
85% uf the fuel's energy was lost to friction and heat
<u>Given </u><u>:</u><u>-</u>
- An elevator is moving vertically up with an acceleration a.
<u>To </u><u>Find</u><u> </u><u>:</u><u>-</u>
- The force exerted on the floor by a passenger of mass m .
<u>Solution</u><u> </u><u>:</u><u>-</u>
As the man is in a accelerated frame that is <u>non </u><u>inertial</u><u> frame</u><u> </u>, we would have to think of a pseudo force .
- The direction of this force is opposite to the direction of acceleration the frame and its magnitude is equal to the product of mass of the concerned body with the acceleration of the frame .
For the FBD refer to the attachment . From that ,
<u>Hence</u><u> </u><u>option</u><u> </u><u>d </u><u>is </u><u>correct</u><u> </u><u>choice </u><u>.</u>
<em>I </em><em>hope</em><em> this</em><em> helps</em><em> </em><em>.</em>
Answer:
The slope of a velocity graph represents the acceleration of the object. So, the value of the slope at a particular time represents the acceleration of the object at that instant.