Answer:
a) a = 1,865 m / s² and b) t = 8.1 s
Explanation:
a) Let's use Newton's second law to find acceleration, we can work the equation in scalar form because displacement and force have the same direction
F = m .a
a = F / m
a = 8.02 10² /4.3 10²
a = 1,865 m / s²
b) We use kinematic relationships in one dimension
vf = vo + at
vf = 0 + a t
t = vf / a
t = 15.1 / 1.865
t = 8.1 s
1. B. Hemo is on a machine, peritoneal is in the abdomen
2. B. Nothing is as good as having your own kidney, and not everyone is a good candidate for all types of dialysis.
3. Also B. Peritoneal dialysis is done over a longer period of time, up to 24 hours. Hemodialysis is done in a few hours. Your kidney works 24/7.
The correct answer is 10 billion years. The Sun is expected to undergo hydrogen fusion for a total of 10 billion years. The Sun generates its energy by nuclear fusion of hydrogen and produces helium nucleus. It fuses 620 million metric tons every second.
If the same atoms appear on both sides, then it's balanced.
In this reaction, there are 4 Oxygens, 2 Carbons, and 2 Nitrogens on each side. So numerically, <em>it's balanced</em>. But I don't know enough chemistry to say whether the reaction is possible.
A) 4.7 cm
The formula for the angular spread of the nth-maximum from the central bright fringe for a diffraction from two slits is

where
n is the order of the maximum
is the wavelength
is the distance between the slits
In this problem,
n = 5


So we find

And given the distance of the screen from the slits,

The distance of the 5th bright fringe from the central bright fringe will be given by

B) 8.1 cm
The formula to find the nth-minimum (dark fringe) in a diffraction pattern from double slit is a bit differente from the previous one:

To find the angle corresponding to the 8th dark fringe, we substitute n=8:

And the distance of the 8th dark fringe from the central bright fringe will be given by
