Answer: The property of magnesium that is exhibited by it is DUCTILITY. The correct option is A.
Explanation:
Magnesium is a member of the alkaline earth metals. It occurs in nature, only in the combined state, as Epsom salt, dolomite and in many trioxosilicates( IV) including talc and asbestos. They have the following physical properties:
--> Appearance: they are silvery-white solids
--> Relative density: It has a relative density of 1.74
--> DUCTILITY: it's very ductile in nature
--> melting point: it has a melting point of 660°C.
--> Conductivity: They are good conductor of heat and electricity.
Furthermore, DUCTILITY is the physical property of a metal associated with the ability to be hammered thin or stretched into wire without breaking. A metal such as magnesium can therefore be coiled as a thin ribbon without fracturing due to its ductile physical properties.
The number of Na atoms in the reactants = 2
<h3>Further explanation</h3>
Every chemical reaction involves compounds that can act as reactants or products
The reactants will react to produce products
The reactants are usually written on the left side of the reaction, while the products on the right side of the reaction
Reaction
2 NaCl + H₂SO₄ → 2 HCl + Na₂SO₄
The element with atomic number 11 = Na(Natrium)
The number of atoms of the element that reacts or is produced can be seen from the reaction coefficient and the number of atoms in the compound
Na in NaCl = 1 atom
From equation, cofficient for NaCl = 2, so number of atoms of Na=2 x 1 = 2
Answer:
<u>The new pressure is 1.0533 atm</u>
<u></u>
Explanation:
According to<u> Boyle's Law :</u> The Pressure of fixed amount of gas is inversely proportional to Volume at constant temperature.
PV = Constant
P1V1 = P2V2
.....(1)
P1 = 3.16 atm
Accprding to question ,
V1 = V
V2 = 3 V
Insert the value of V1 , V2 and P1 in the equation(1)


V and V cancel each other



The heat lost by the metal should be equal to the heat
gained by the water. We know that the heat capacity of water is simply 4.186 J
/ g °C. Therefore:
100 g * 4.186 J / g °C * (31°C – 25.1°C) = 28.2 g * Cp *
(95.2°C - 31°C)
<span>Cp = 1.36 J / g °C</span>