The correct answer is a Photon.
One photon is released for each event. Photons are elementary particles of all electromagnetic radiation, including light.
<span>Celsius scale: 100 degrees.
Fahrenheit scale: 180 degrees.</span>
Answer:
the heat rate required to cool down the gas from 535°C until 215°C is -2.5 kW.
Explanation:
assuming ideal gas behaviour:
PV=nRT
therefore
P= 109 Kpa= 1.07575 atm
V= 67 m3/hr = 18.6111 L/s
T= 215 °C = 488 K
R = 0.082 atm L /mol K
n = PV/RT = 109 Kpa = 1.07575 atm * 18.611 L/s /(0.082 atm L/mol K * 488 K)
n= 0.5 mol/s
since the changes in kinetic and potencial energy are negligible, the heat required is equal to the enthalpy change of the gas:
Q= n* Δh = 0.5 mol/s * (- 5 kJ/mol) =2.5 kW
Answer:
if electrons are shared unequally between bonded atoms
Explanation:
A polar covalent bond is a bond that is formed due to the unequal distribution of electrons between two partially charged atoms. This is observed when the difference in electronegativity between the bond atoms is between 0.5 and 1.7.
A polar bond is a covalent bond between two atoms where the electrons that form the bond are unevenly distributed. This causes the molecule to have a slight electric dipole moment where one end is slightly positive and the other is slightly negative.
The charge of the electric dipoles is less than a full unit charge, so they are considered partial charges and are called delta plus (δ +) and delta minus (δ-).
Because positive and negative charges are separated at the bond, molecules with polar covalent bonds interact with the dipoles of other molecules. This produces intermolecular dipole-dipole forces between the molecules.
Answer:
The boiling point of HF is <u><em>higher than</em></u> the boiling point of H2, and it is <u><em>higher than</em></u> the boiling point of F2.
Explanation:
In HF, inter- molecule forces will be present between the hydrogen and fluorine atoms. There will be hydrogen bonding present among the hydrogen and fluorine atoms. Hydrogen bonds are strong bonds and hence the boiling point for HF would be high as much energy will be required to break these bonds.
H2 and F2 will only have intra-molecular attractions and there will be no hydrogen bonds present in them. As a result, their boiling point will be lower.