Answer:
To determine the amount of heat the gold has absorbed to melt, we simply multiply the mass of the block of ice to the heat of fusion of water which is given above. We calculate as follows:
Heat = 20.0 g (35.4 g)
Heat = 1290 J
First figure out how many grams must freeze and then convert the grams to moles.
<span>Hf = -334 J/g. Convert this to KJ/g by dividing by 1000. (There are 1000 Joules in a kJ). </span>
<span>Hf = -334 J/g ÷ 1000 J/kj = -0.334 kJ/g </span>
<span>Now, divide 100 kJ by -0.334 kJ/g (see how the units are lining up?) </span>
<span>100 kJ ÷ -0.334 kJ/g = 299 g </span>
<span>Now convert this to moles by dividing by the molecular weight of water (18.0g/mole). </span>
<span>299 ÷ 18.0 = 16.6 moles </span>
Answer:
2.5 × 10² ppm
Explanation:
Step 1: Given data
- Mass of the sample: 200. g
Step 2: Convert 0.050 g to μg
We will use the conversion factor 1 g = 10⁶ μg.
0.050 g × 10⁶ μg/1 g = 5.0 × 10⁴ μg
Step 3: Calculate the concentration of NaCl in ppm
The concentration of NaCl in ppm is equal to the micrograms of NaCl per gram of the sample.
5.0 × 10⁴ μg NaCl/200. g = 2.5 × 10² ppm
Answer:check explanation
Explanation:
(a). HOW THE DISTANCE BETWEEN ELECTRON DONOR AND ACCEPTOR AFFECTS THE RATE OF ELECTRON TRANSFER IN BIOLOGICAL SYSTEM:
Distance between the acceptor and the donor can affect in two ways; short distance and long distance effect.
Short distance causes
electronic orbitals of donor and acceptor directly overlap whereas in LONG DISTANCE reactions this coupling is indirect because of
sequential overlaps of atomic orbitals of the donor, the intervening medium, and the orbitals of the acceptor.
(b). HOW REORGANIZATION ENERGY OF REDOX ACTIVE SPECIE SURROUNDING MEDIUM AFFECTS:
the reorganized energy does not depend on the pre-existing intra molecule electric field. The charge transferred inside the molecule interacts with its aqueous surroundings.
Reorganized energy can be calculated using Poisson-Boltzmann equation.
Answer:
a. P
b. Br
c. Ag
d. Na
Explanation:
The Periodic Table says so