Question is incomplete, the complete question is as follows:
A student wants to examine a substance by altering the bonds within its molecules. Which of the following properties of the substance should the student examine?
A. Toxicity, because it can be observed by altering the state of the substance
B. Boiling point, because it can be observed by altering the state of the substance
C. Toxicity, because it can be observed by replacing the atoms of the substance with new atoms
D. Boiling point, because it can be observed by replacing the atoms of the substance with new atoms
Answer:
B.
Explanation:
A student can examine a substance without altering the bonds within the molecules by examining its boiling point.
The boiling point is the property of a substance, at which the substance changes its state, which is from solid to liquid, liquid to gas and others. So, examining the boiling point will alter the bonds within the molecules as the state of substance will change.
Hence, the correct answer is "B".
Answer: -2m/s2
Explanation:
Using the following equation ; acceleration = Change in velocity / time
i.e a = v - u / t
where 'a' = acceleration
v = final velocity
u = initial velocity
t = time
Therefore; from the graph we have acceleration to be, 0 - 6m/s / 3s = -2m/s2
Answer:
single replacement reaction
Explanation:
This is a kind of single replacement reaction where you switch either cations or anions. Here you switched Ca for H and produced Cacl2 and H2 gas by itself.
Answer:
65.08 g.
Explanation:
- For the reaction, the balanced equation is:
<em>2AlCl₃ + 3Br₂ → 2AlBr₃ + 3Cl₂,</em>
2.0 mole of AlCl₃ reacts with 3.0 mole of Br₂ to produce 2.0 mole of AlBr₃ and 3.0 mole of Cl₂.
- Firstly, we need to calculate the no. of moles of 36.2 grams of AlCl₃:
<em>n = mass/molar mass</em> = (36.2 g)/(133.34 g/mol) = <em>0.2715 mol.</em>
<u><em>Using cross multiplication:</em></u>
2.0 mole of AlCl₃ reacts with → 3.0 mole of Br₂, from the stichiometry.
0.2715 mol of AlCl₃ reacts with → ??? mole of Br₂.
∴ The no. of moles of Br₂ reacts completely with 0.2715 mol (36.2 g) of AlCl₃ = (0.2715 mol)(3.0 mole)/(2.0 mole) = 0.4072 mol.
<em>∴ The mass of Br₂ reacts completely with 0.2715 mol (36.2 g) of AlCl₃ = no. of moles of Br₂ x molar mass</em> = (0.4072 mol)(159.808 g/mol
) = <em>65.08 g.</em>