Answer:
The percent composition is 21% N, 6% H, 24% S and 49% O.
Explanation:
1st) The molar mass of (NH4)2SO4 is 132g/mol, and it represents the 100% of the mass composition.
In 1 mole of (NH4)2SO4, there are:
- 2 moles of N.
- 8 moles of H.
- 1 mole of S.
- 4 moles of O.
2nd) It is necessary to calculate the mass of each element, multiplying its molar mass by the number of moles:
- 2 moles of N (14g/mol) = 28g
- 8 moles of H (1g/mol) = 8g
- 1 mole of S (32g/mol) = 32g
- 4 moles of O (16g/mol) = 64g
3rd) With a mathematical rule of three we can calculate the percent composition of each element in the molecule of (NH4)2SO4:




In this case, we can calculate the percent composition of Oxygen by subtracting the other percentages, since the total must be 100%.
So, the percent composition is 21% N, 6% H, 24% S and 49% O.
Answer:
The molecules inside the ice pack are frozen therefore they are stuck in place. The molecules inside an insulated cup aren't frozen but still stuck inside of their container so that they can not fly out.
Explanation:
Salt water is a Homogeneous Mixture......
It is a physical change because you can not put it back like it was
Answer:
built a special cavity where the electromagnetic quantum states resonate with the natural vibrations of the atoms. In doing so, one cancouple a photon-based oscillator to a mechanical oscillator, controlling the mechanical quantum states with visible light. The result is a prototype of a quantum transducer, a device that converts light energy into mechanical energy (sound energy)
Explanation:
Sound energy is created by vibrating particles of medium that propagates as a wave. So in order to convert light (electromagnetic wave) to sound wave it has to be converted into electric or magnetic signals. Then these signals can be converted into sound waves.
However, if you consider the particle nature of light. It contains momentum and after collision sets the other particles into oscillatory motion but the wavelength of these vibrations is too high to be considered as sound waves.