<h3>Answer;</h3>
-Temperature
<h3><u>Explanation;</u></h3>
- Sound is a type of mechanical wave, which means it requires a material medium for transmission. It results from the vibration of particles.
- The speed of sound in mediums varies depending on the property of the medium and a number of other factors which includes; temperature, pressure, and humidity.
- Temperature increases the speed of sound wave as particles at higher temperatures tend to possess more energy and thus they will vibrate faster and thus the sound wave will travel faster.
Answer:
A, B, F
Explanation:
I believe these are the answers, sorry if it is incorrect.
Answer:
(a) 272.73 m
(b) 0.338 N/C
Explanation:
frequency, f = 1100 kHz = 1100 x 1000 Hz
E(t) = Eo Sin(2πft)
Eo = 0.62 N/C
(a) Velocity of light, c = 3 x 10^8 m/s
wavelength, λ = c / f = (3 x 10^8) / (1100000) = 272.73 m
Thus, the wavelength is 272.73 m.
(b) at t = 3.1 microsecond = 3.1 x 10^-6 s
E = Eo Sin (2 π ft)
E = 0.62 Sin (2 x 3.14 x 1100 x 10^3 x 3.1 x 10^-6)
E = 0.62 Sin (21.4148)
E = 0.62 x 0.5449 = 0.338 N/C
Thus, the electric field at t = 3.1 microsecond s 0.338 N/C.