<h2>Answer:</h2>
The correct answer is option D. Which is "Over time, the lawn has naturally become disorderly".
<h3>Explanation:</h3>
- Entropy, the measure of a system's thermal energy per unit temperature that is unavailable for doing useful work.
- It is also a measure of the molecular disorder, or randomness, of a system.
- According to above definitions of entropy option D is correct.
- <u>So entropy of system is randomness/disorder that is increasing with time in case of lawn.</u>
Answer:

Explanation:
Given:
- mass of steam,

- temperature of steam,

- temperature of resultant water,

We have,
- latent heat of vapourization of water,

- specific heat capacity of water,

<em>When we cool the steam of 100°C then firstly it loses its latent heat to convert into water of 100°C and the further cools the water.</em>
<u>Now the heat removed from steam to achieve the final state of water:</u>




At certain altitude, the temperature of air decrease, The air becomes saturated and water vapour molecules starts condensing.
As the altitude of air increase, the atmospheric pressure decrease due to which the temperature of the air decrease. The water molecules in the atmosphere start condensing, which saturate the air (that is air can no hold water molecules), due to which the water vapour molecules starts condensing and falls on the earth in the form of rain.
Answer:
A) When the angle between the Force (F) and Displacement (x) is 0°, because, Work done (W) is directly proportional to the Cosine of the Angle between the Force applied and the resultant displacement of the subject.
W = F•x cos ∅
If ∅ = 0°,
W = F•x ===> Maximum Work Done.
If ∅ = 45°,
W = F•x/√2
If ∅ = 90°,
W = 0
If ∅ = 180°,
W = –F•x ===> Minimum Work Done.